1: FCC lattice is the reciprocal lattice of the
a. BCC lattice
b. SC lattice
c. HCP lattice
d. Both b and c
2: The pure rotational symmetry which is not possible in crystalline solid is
a. 2-fold
b. 3-fold
c. 4-fold
d. 5-fold
3: The distance between the adjacent atomic planes in CaCO3 is 0.2nm. The smallest Bragg scattering for 0.03nm X-ray is
a. $\mathbf{2}.\mathbf{9}°$
b. $1.5°$
c. 0.29°
d. 5.8°
4: The number of two-dimensional lattices are
a. 3
b. 5
c. 7
d. 9
5: The structure factors for (010) and (200) reflections respectively, in face centred cubic lattice are
a. $2f\ and\ zero$
b. $\mathbf{Zero}\ \mathbf{and}\ \mathbf{4f}$
c. $\mathbf{Zero}\ \mathbf{and}\ \mathbf{4f}$
d. Zero and zero
6: Packing fraction of an FCC lattice is
a. 0.52
b. 0.32
c. 0.74
d. 0.62
7: The number of lattice points in a primitive cell is
a. 2
b. 3
c. 4
d. 1
9: The volume of primitive cell of the FCC reciprocal lattice is
a. $4({\frac{2\pi}{a})}^3$
b. $4({\frac{\pi}{a})}^3$
c. $4({\frac{\pi}{2a})}^3$
d. $4({\frac{3\pi}{a})}^3$
10: $\mathbf{\ _K^\rightarrow}$ is the wave vector of incident light $|\vec{K|}=\frac{2\pi}{\lambda}$ , λ is wavelength of the light, and $\vec{G}$ is reciprocal lattice vector, then the Bragg’s law can be written as
a. $ \vec{k} + \vec{G} =0 $
b. $\mathbf{\vec{2K.G} + \vec{G^2} =0}$
c. $\vec{2K.G} + \vec{K^2} =0$
d. $\vec{K}.\vec{G}=0$
11: The De-Broglie wavelength associated with an electron of mass m and accelerated by a potential V is
a. $\frac{\mathbf{h}}{\sqrt{\mathbf{2}\mathbf{m}_\mathbf{e}\mathbf{V}}}$
b. $\frac{\sqrt{2m_eV}}{h}$
c. $\frac{h}{\sqrt{eVm}}$
d. $\frac{h}{2m_eV}$
12: Crystal structure consists of
a. Space lattice
b. Basis
c. Both a and b
d. None of these
13: Packing density is maximum for
a. Simple cubic lattice
b. Body centred cubic lattice
c. Face centred cubic lattice
d. All of these
14: Packing fraction is minimum for
a. Face centred cubic lattice
b. Body centred cubic lattice
c. Simple cubic lattice
d. All of above
15: Primitive cell has
a. Maximum volume
b. Zero volume
c. Atoms at corners of unit cell
d. None of above
16: Packing density of Diamond crystal is
a. 52%
b. 74%
c. 68%
d. 34%
17: NaCl crystal has……. structure
a. FCC
b. BCC
c. HCP
d. None of above
18: Miller Indices of a plane having intercepts 2,2, are
a. (001)
b. (120)
c. (002)
d. (110)
19: Number of atoms per unit cell in lattice are
a. 1
b. 2
c. 4
d. 6
20: Coordination number of fcc lattice is
a. 6
b. 8
c. 0
d. 12
21: Packing density of bcc lattice is
a. 52%
b. 68%
c. 74%
d. 85%
22: Cubic crystal is defined by
a. $\mathbf{a=b=c \ \ \ \ \alpha = \beta = \gamma=90^o }$
b. $a=b=c\ \ \alpha=\beta=\gamma=120$
c. $a\neq b=c\ \ \alpha=\beta=\gamma=90$
d. $a\neq b\neq c\ \ \alpha=\beta=\gamma=90^o$
23: A crystal cannot have …………fold symmetry
a. Two
b. Four
c. Five
d. Six
24: A polyhedral block which fill whole of space by action of some suitable translation operation is called
a. Primitive cell
b. Unit cell
c. Wigner Seitz cell
d. Amorphous solid
25: The process in which solid grows is the key whether a solid is
a. Isotropic
b. Anisotropic
c. Both a and b
d. None of these
26: Regular and periodic arrangement of atoms /molecules/ions in solid is due to tendency of them to settle down in state of
a. Minimum energy
b. Maximum energy
c. Free energy
d. Helmholtz energy
27: Rectangular primitive lattice is invariant under
a. Mirror reflection symmetry
b. Inversion symmetry
c. Translation symmetry
d. All of above
28: Tetragonal lattice has………. Fold symmetry
a. Four
b. One
c. Two
d. Six
29: A solid showing neither rectangular nor granular is known as
a. Non-crystalline
b. Amorphous
c. Both a and b
d. Crystalline
30: Inversion is ………symmetry
a. Point
b. Plane
c. Space
d. All of above
31: The vacant interstitial space between the close packed atoms is called
a. Basis
b. Polytypism
c. Void
d. None of above
32: The maximum energy that X-ray photon can have cannot exceed maximum energy of
a. Proton beam
b. Electron beam
c. Neutron beam
d. All of above
33: The shortest wavelength that is present in X-rays produced at an accelerating potential of 50kV is
a. 428A
b. 0.25A
c. 5126m
d. 0.25m
34: Mosley plotted a graph between atomic number of elements and square root of frequencies of characteristic X-rays, which was
a. A curve
b. Parabola
c. Hyperbola
d. Straight line
35:When X-rays are passed through a material , the intensity of transmitted beam is ……….that of incident beam
a. Greater than
b. Equal to
c. Less than
d. Insufficient data
36: Bragg’s equation is a consequence of
a. Schrodinger equation
b. Laue equations
c. Miller indices
d. Diamond structure
37: A crystal lattice may be considered as an assembly of various different sets of equidistant………..planes
a. Parallel
b. Perpendicular
c. Reflecting
d. Diffracting
38: The 1st Brillion zone of a bcc lattice is a twelve faced solid called rhombic
a. Octahedron
b. Dodecahedron
c. Triangle
d. None of these
39: Every reciprocal lattice vector $\vec{G}$ is ……….to plane of crystal lattice (hkl)
a. Tangent
b. Equal
c. Normal
d. None of these
40: The interplanar spacing $d_{hk}$ in a real crystal lattice is equal to
a. $\frac{a}{h}$
b. $\frac{\mathbf{2\pi}}{\mathbf{G}}$
c. $\frac{G}{2\pi}$
d. None of above
41: Reciprocal of a reciprocal lattice is …………..lattice
a. Direct
b. Reciprocal
c. Normal
d. Brillion zone
42: Volume of a unit cell of reciprocal lattice is inversely proportional to that of corresponding
a. Reciprocal lattice
b. Direct lattice
c. Primitive cell
d. Unit cell
43: The 1st Brillion zone of a fcc lattice is a fourteen faced solid called truncated
a. Octahedron
b. Dodecahedron
c. Square
d. None of above
44: The atomic scattering factor is a measure of ………..an atom in scattering X-rays
a. Wavelength
b. Frequency
c. Volume
d. Efficiency
45: The Powder method is the most convenient method for obtaining diffraction data and is readily applicable to all
a. Liquids and gases
b. Solids
c. Crystalline materials
d. All
46: Neutron diffraction differs from X-ray diffraction in sense of that X-rays are scattered by electron clouds whereas neutrons are scattered by
a. Electrons and holes
b. Nuclei of atoms
c. Photons
d. Mesons
47: Except of ………….all the metals are solid
a. Na
b. Mg
c. Hg
d. Al
48: Non-metals are
a. Malleable
b. Ductile
c. Both
d. None of these
49: In diamond, bonding occurs in geometry
a. Tetrahedral
b. Trigonal
c. Tetragonal
d. All of these
50: The ratio of ionic radii is denoted by
a. $\frac{r^<}{r^>}$
b. $\frac{\mathbf{r}^>}{\mathbf{r}^<}$
c. $\frac{r^=}{r^>}$
d. $\frac{r^<}{r^=}$
51: The compressibility K is defined as
a. $\frac{\mathbf{1}}{\mathbf{B}}$
b. B
c. $\sqrt B$
d. B2
52: The stiffness constant S’ s has the dimensions of
a. $\mathbf{\frac{[Area]}{[Force]}}$
b. $\frac{[Force]}{[Area]}$
c. $\frac{[Energy]}{[Volume]}$
d. None of these
53: The compliance constant C’ s has the dimensions of
a. $\frac{[Area]}{[Force]}$
b. $\frac{[Force]}{[Area]}$
c. $\frac{[Force]}{[Area]}$
d. Both b and c
54: $\mathbf{e_{xy}=\ldots?}$
a. $\mathbf{\epsilon}{\mathbf{yx}}{+\mathbf{\epsilon}}{\mathbf{xy}}$
b. $\epsilon_{zy}{+\epsilon}_{yz}$
c. $\epsilon_{zx}{+\epsilon}_{xz}$
d. All of these
55: The ionic radius of Al+3 is
a. 0.102
b. 0.212
c. 0.054
d. 0.072
56: Both O-2 and Mg+2 has 10 electrons, but they don’t have the same
a. Charge
b. Ionic radius
c. Electronic configuration
d. All of these
57: In Equation $\mathbf{V\left(r\right)=[({\frac{\sigma}{r})}^{12}-\left({\frac{\sigma}{r})}^6\right]}$ the term $({\frac{\sigma}{r})}^6$ denotes
a. Repulsion
b. Attraction
c. Both
d. None of these
58: The Leonard-Jones potential is a function of
a. Time
b. Velocity
c. Distance
d. All of these
59: As the separation distance decreases below equilibrium, then the potential energy becomes
a. Decreases
b. Increases
c. Moderate
d. All of these
60: Cohesive energy is generally expressed in
a. eV per atom
b. J
c. eV
d. None of these
61: The attractive and repulsive forces are balance each other when
a. $r>r_0$
b. rVr0
c. r = r0
d. $ r\geq r_0$
62: Equilibrium density r0 of solid noble gases is
a. 1.09
b. -1.09
c. 1.09
d. $-1.09\epsilon$
63: Equilibrium cohesive energy µ(ro) of solid noble gases is
a. $8.6\epsilon$
b. $-\mathbf{8}.\mathbf{6\epsilon}$
c. $8.6\sigma$
d. $-8.6\sigma$
64: The Madelung constant M is defined as
a. 2ln 2
b. 2ln3
c. 3ln2
d. ln2
65: The value of Madelung constant is
a. $-1.38\ per\ molecule $
b. $0.38\ per\ molecule$
c. $\mathbf{1}.\mathbf{38}\ \mathbf{per}\ \mathbf{molecule}$
d. None of these
66: The equation $M=\frac{6}{1}-\frac{12}{2}+\frac{8}{3}-\frac{6}{4}+\frac{24}{5}\ldots$ is applicable only for
a. H2O
b. MgCl2
c. KCl
d. NaCl
67: Madelung constant for one dimensional ionic crystal is
a. 2ln 2
b. 2
c. ln 2
d. None of these
68: The potential energy of a system of two particles is $U=-\frac{A}{r^n}+\frac{B}{r^m}$ For this system to be stable, the condition is
a. n=m
b. n<m
c. $\mathbf{m}>\mathbf{n}$
d. None of these
69: NaCl is a ……….molecule
a. Polar
b. Non-polar
c. Both
d. None of above
70: The lowest melting point is found in crystalline solid having……bonds
a. Metallic
b. Covalent
c. Ionic
d. Vander Waals
71: Which statement is correct?
a. Hydrogen bond increases the bonding of water H2O
b. Hydrogen bond decreases the bonding of water H2O
c. Hydrogen bond is non-directional
d. All of these
72: In metallic bonds
a. All electrons are bounded
b. Most electrons are free
c. Both a and b
d. None of these
73: Metals can exist in ….state only because there are forces of attraction acting between atoms when they are brought close to each other
a. Solid
b. Liquid
c. Plasma
d. All of above
74: Vander Waal bonding is …….of all bonding
a. Strongest
b. Weakest
c. Energetic
d. All of above
75: The cohesive energy of ionic crystals is mainly due to
a. Electrostatic repulsion
b. Gravitational attraction
c. Magnetic attraction
d. Electrostatic attraction
76: Carbon in the form of diamond, CCl4, CH4 etc. exhibit……covalent bonding
a. Sp3—tetrahedral
b. sp2—tetrahedral
c. sp3-covalent
d. All of these
77: Covalently bonded atoms often produce a configuration that behaves like an
a. Electric dipole
b. Magnetic dipole
c. Both a & b
d. None of these
78: An atom without its valence electrons is called
a. Metal
b. Crystal
c. Ion-core
d. None of these
79: The longitudinal stiffness C is defined as
a. $\mathbf{a\alpha}$
b. $\alpha\beta$
c. $b\alpha$
d. None of these
80: $v_s=\sqrt{\frac{C}{\rho}}$ is constant for given lattice and has the dimensions of
a. Mass
b. Time
c. Volume
d. Velocity
81: Under what condition, dispersion effect is negligible and medium behaves like a homogeneous continuous?
a. $v_p=v_g{\neq v}_s$
b. $v_p\neq v_g{\neq v}_s$
c. $\mathbf{v}\mathbf{p}=\mathbf{v}\mathbf{g}{=\mathbf{v}}_\mathbf{s}$
d. All of these
82: The ratio of amplitude at K=0, for the acoustical branch is
a. $\frac{U}{V}=0$
b. $\frac{\mathbf{U}}{\mathbf{V}}=\mathbf{1}$
c. $\frac{U}{V}=-1$
d. $\frac{U}{V}=\infty$
83: At the zone boundary, the frequency of acoustical branch depends upon
a. Lower mass(M1)
b. higher mass(M2)
c. Both
d. None of these
84: If the crystal structure is unstable, then will be
a. Imaginary, negative
b. Imaginary, positive
c. Negative, imaginary
d. Positive, imaginary
86: The number of vector N is … operator
a. Parity
b. Projection
c. Identity
d. Hermitian
87: The action of $a\ on\ |n>$ generates a new state $|n-1>$ with eigen value
a. n
b. n-1
c. √n
d. √n-1
88: The action of $a\ on\ |n>$ generates a new state |n+1〉 with eigen value
a. n
b. n+1
c. √
d. √n+1
89: The Dulong-Petit law fails near room temperature (300 K) for manu light elements because their Debye temperature is:
a. >>300 K
b. ~300 K
c. <<300 K
d. 0 K
90: According to Dulong-Petit law, the specific heat of a solid
a. Proportional to temperature
d. Doesn’t depends on temperature
c. Depends on square of temperature
d. Inversely proportional to temperature
91: The specific heat due to free electrons in metal varies as
a. $\mathbf{C}_\mathbf{V}\propto\mathbf{T}$
b. $C_V\propto T^2$
c. $C_V=constant$
d. $C_V\propto\frac{1}{T}$
92: The lattice specific heat at constant volume CV of a solid at lower temperature depends on temperature T as
a. $C_V\propto T$
b. $C_V\propto T^2$
c. $\mathbf{C}_\mathbf{V}\propto\mathbf{T}^\mathbf{3}$
d. $C_V\propto\frac{1}{T}$
93: The equation $C_V=3R$ denotes the
a. Einstein’s law
b. Dulong-Petit law
c. Debye law
d. None of these
94: The magnitude of group velocity $v_g$ is defined as
a. $|\mathbf{\nabla}_\mathbf{k}\mathbf{\omega}|$
b. $\nabla_k\omega$
c. ${-2\nabla}_k\omega$
d. ${-\nabla}_k\omega$
95: Einstein’s temperature $\theta_E$ is defined as
a. $\frac{\mathbf{h}\mathbf{v}\mathbf{E}}{\mathbf{k}\mathbf{B}\mathbf{T}}$
b. $\frac{v_E}{k_B}$
c. $\frac{\mathbf{h}}{\mathbf{k}_\mathbf{B}}$
d. $\frac{\mathbf{h}\mathbf{v}\mathbf{E}}{\mathbf{k}\mathbf{B}}$
96: The Einstein’s model explains the observed specific heat of solid at temperature
a. Low
b. Normal
c. High
d. All of these
97: Cuttoff wave vector KD is defined as
a. $\frac{\mathbf{\omega}_\mathbf{D}}{\mathbf{v}}$
b. $\frac{v}{\omega_D}$
c. $\frac{hv}{\omega_D}$
d. None of these
99: At ordinary temperature, contribution of electronic heat capacity to the heat capacity of solids is
a. Small
b. Infinite
c. Large
d. None of these
100: In Einstein theory of specific heat of solids, the atoms in solid are assumed as
a. Coupled oscillator
b. Independent oscillator
c. Damped oscillator
d. None of above
101: Lattice vibrations are
a. Longitudinal
b. Transverse
c. Both a and b
d. None of these
102: The momentum of phonon is
a. $\hbar\mathbf{k}^\rightarrow$
b. $\hbar w$
c. Zero
d. None of these
103: Energy of elastic waves is always
a. Zero
b. Continuous
c. Quantized
d. Cannot be predicted
104: According to Einstein model, as temperature approaches to zero, lattice contribution to heat capacity of solid approaches to
a. Infinity
b. Zero
c. Any value
d. Constant large value
105: The assumption that the atoms in a lattice are coupled together is taken into account for variation of heat capacity of solid by
a. Dulong and Petit
b. Einstein
c. Debye
d. All of above
106: For what value of k stationary waves are set up in one dimensional lattice?
a. $\mathbf{k}=\mathbf{\pi}/\mathbf{a}$
b. $k=2\pi/a$
c. $k\rightarrow0$
d. $k=4\pi/a$
107: The quantum energy associated with an elastic wave is called
a. Photon
b. Neutron
c. Phonon
d. All of above
108: The concept of quantized lattice vibrations helps to explain a number of properties of solids such as………near absolute zero
a. Volume of solid
b. Pressure of solid
c. Heat capacity
d. All of above
109: The velocity with which the wave crests and troughs travel through a medium is called
a. Group velocity
b. Phase velocity
c. Uniform velocity
d. Average velocity
110: A phonon is emitted or absorbed in ………. scattering of photon by crystal
a. Elastic
b. Inelastic
c. Both a and b
d. None of above
111: Dulong and Petit law fails at
a. Low temperature
b. High temperature
c. Both a and b
d. None of these
112: In the long wavelength limit, for mono-atomic linear lattice, phase velocity is……. group velocity
a. Less than
b. Greater than
c. Equal to
d. Not known
113: The frequency range between top of acoustic branch and bottom of optical branch is
a. Allowed
b. Forbidden
c. Band gap
d. Nil
114: Theoretical strength is about ………times to average real strength of a material
a. 1
b. 10
c. 100
d. 1000
115: Following is not the 2-dimensional imperfection
a. Twin boundary
b. Dislocation
c. Surface
d. Grain boundary
116: Figure out the odd one in the following
a. Frenkel defect
b. Tilt boundary
c. Twist boundary
d. Stacking fault
117: Thermodynamically stable defects
a. Point defects
b. Line defects
c. Surface defects
d. Volume defects
118: Taylor dislocation cannot move by the following way
a. Slip
b. Climb
c. Cross-slip
d. All of these
119: Conservative movement of dislocations
a. Slip
b. Climb
c. Both a and b
d. None
120: Burgers vector changes with
a. Kind of dislocation
b. Length of dislocation
c. Both kind and length of dislocation
d. None of these
121: Requirement for cross-slip movement of dislocation
A. Preferred slip plane
b. Preferred slip direction
c. No preferred slip planes
d. No Preferred slip direction
122: Beneficial property of foreign particles
a. Reduces density
b. Act as stress raisers
c. Obstructs dislocation motion
d. None of these
123: Each of the following solids shows the Frenkel defect except
a. ZnS
b. AgBr
c. AgI
d. KCl
124: A normal lattice site from where the atom or ion is missing, is known as
a. Schottky defect
b. Frenkel defect
c. Line defect
d. All of these
125: An atom located at a position that is not normal lattice site is called
a. Schottky defect
b. Frenkel defect
c. Exciton
d. Polaron
126: Quantized electron-hole pair is called
a. Exciton
b. Polaron
c. Colour centre
d. None of above
127: Diffusion constant depends upon
a. Nature of diffusing species
b. The Temperature
c. The medium in which it is diffusing
d. All of these
128: The band gap of ionic crystals is about 6eV which is equivalent to energy of a photon of wavelength
a. 2000A0
b. 1000A0
c. 3000A0
d. 5000A0
129: The process of diffusion is governed by
a. Diffusion coefficient
b. Einstein equation
c. Fick’s law
d. None of these
130: Atomic diffusion may take place by interstitial diffusion and
a. Dissociative diffusion
b. Ring diffusion
c. Vacancy diffusion
d. All
131: Ionic conductivity in alkali halides, like diffusion is explained in terms of migration of……
a. Negative
b. Positive
c. Both a and b
d. None of these
132: The fundamental mechanism by which atoms move through the crystal depends on
a. Crystal structure
b. Atomic size
c. Extent of defect in crystals
d. All