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Chapter 1

Equilibrium Thermodynamics

SOLVED PROBLEMS

Problem: 1.1- Rewrite the van der Waals equation in the form P = G(6q,V).

Solution|

The van der Waals equation is given by

= 0k = (P+2) (V-1

Vv
0@R a
— P4+ =
V=0 Ty
0o R a
or :VG—b_V or P=G(0gV)

Problem: 1.2-
By writing the internal energy as a function of state U (T, V') show that

ou ou
dQ = (8_T)VdT+ [(W)TJFP} av

U=U(T,V)

Differentiating it, we have



CHAPTER 1. EQUILIBRIUM THERMODYNAMICS

oU oU
AU = (ﬁ)vdzw <W)Tdv (1.1)

As, from first law of thermodynamics: d@) = dU + PdV, so that

dU = dQ — PdV (1.2)

putting value of Eq.(1.2) and Eq.(1.1), we have

dQ — PdV = (g—g) (g—g) v
T
ouU ouU
iQ = (G7) v+ (5z) aveepav
oU oU
@ = (a) o () ol

Hence proved.
Problem: 1.3- Which one of the following is the exact differential?
1. dz = (10y + 6z) dy + 6ydz,
2. dv = (3y*+ 4yz) dy + (2yz + y?) dz,
3.dr = y*Z 'y + 2dz ?

(1).

dx = (10y + 62) dy + 6ydz

Let dr = Ady + Bdz , where A = 10y+6z and B = 06y.

DA OB
o (5), - G).

then dz is an exact differential equation.
0A 0
- - 21 —
( ER ) =3 (10y + 62) 6
9 6y
0z

() o -
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Hence these are exact differentials.

(2).
dr = (3y*+4yz) dy + (2yz + y°) dz

Let dv = Ady + Bdz , where A = (3y*>+4yz) and B = 2yz+y> The given

equation is an exact differential.
o (2 - (2)
0z ), oy /.

oA\ 0 ., -

0B 0
— ] ==(2 ) = 2242
(ay>z oy V) = 2t
GA) 0B
2 ()
<8z y oy ) .
Hence, this is not an exact differential.

(3)-

Now

dr = y*z7'dy + zdz

Here dv = Ady + Bdz , where A = y*27!' and B = z. The given equation is

DA OB
o (5), - (G).

an exact differential.

Let us check

So
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CHAPTER 1. EQUILIBRIUM THERMODYNAMICS
0A 0B
Yy 4

Problem: 1.4- The equation listed below are not exact differentials. Find for each equa-

is not an exact differential.

tion an integrating factor g (y,2) = y“2°, where a and 8 can be any number that

will turn in into an exact differential.
1. do = 122%dy + 18yzdz
2. dx = 2e *dy —ye *dz

(1).

dr = g(y,2) [1222dy + 18yzdz}
As  g(y.2) =y’

do = 12242 dy + 18yzy*2°dz

do = 12y°2*Pdy + 18y~ 2P dz

Here dv = Ady + Bdzso A = 12y°2°*? and B = 18yt1°*!
@—’:)y = 12y* (B +2) 2!

(g—f)z = 182" (a + 1)y~

dz is an exact differential, if <%>y = <%—5>z

ie, 12y (B +2) 27T =18 (a +1) 2/ 1y~
2(8+2) =3(a+1)
264+4 =3a+3

26—-2a+1 =0

2 1 -1
a = b+ andﬁz?ﬂ
3 2

e 241 3 _ _ _
So,if f=1,a =22 =35 =1 Hence,a =1, = 1.
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dz = g(y,z) [2¢ *dy — ydze ]

de = y*2° (26_Zdy — ye_zdz)

de = 2e*y*2Pdy — 2Py* e *dz = Ady + Bdz
A =2e7y*2" and B = —e Fyotlf

Now, let dx is an exact differential, so <@)y = (a—B)z.
=2y (e* (=1) 2% + e 732"
y

0z
0A
N -
ow. ( az)
= 2y“ (e_zﬁzﬂ_l — e_zz'B)

a_B _2_7za+1,3
(ay)z_ay( <)

= —e " (a+ 1)y’

Now
_2?/016—225 + 2ya (e_zﬁzﬁ_1> = —e % (CY + 1) yaZ’B
9= (526_1 _ z'B) = —e*(a+1)2 dividing byy®
262P71 — 228 = — (a + 1) Zdividing bye™*
262°71 = —(a+1)2° +22°
25 — —(a+1)27 +228
281
2 — — ((a+1)+2)2°
= e
(—a—1+2)2°
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CHAPTER 1. EQUILIBRIUM THERMODYNAMICS

26 =z2(1—a)
2
—ﬁ =1—«
z
2
—5 -1 = -«
z
2
a =1~ —6
z
z— 203
o =
z
So,ifa=1,=0
Problem: 1.5- Differentiate
r = 22ev2

to get expression for dv = Ady+ Bdz. Now divided by zev*#. Is the resulting equation

an exact differential?

dr = Ady + Bdz
d
A = <d_x) = 2%e¥™? (2zy) = 2yzPeV’?
Y72
dﬂ? 22 2 _y%z 2 22 2.2 y’z
B = = = 2ze¥ * 4 2% (y)zZzey +y“z7e
2
y
dr = 2yz36y22dy + (226yz2 + y2226y22)dz

Now divided by ze¥’7 | we get

de = 2yz2dy + (2 + yzz) dz = Ady+ B'dz

0A'
(a_> -

Now, A" = 2y2%, B' = 2 + 4%z

Quanta Publisher 6 Thermal and Statistical Physics



Quanta Publisher 7 Thermal and Statistical Physics



Chapter 2

Elements of Probability Theory

SOLVED PROBLEMS

Problem: 2.1- Two drunks start out together at the origin each having equal probabil-
ity of making step to the left or right along x-axis. Find the probability they meet again

after N-step. It is to be understood that the men make their steps simultaneously.

We consider the relative motion of two drunks, with each simultaneous step, they have
probability of % of decreasing their separation and }1 of increasing their separation. Let

the number of times each case occurs ny,ny and ng respectively.

W B N! IN™ /1\™ /1\™
(nl’m’ng)_nlan!ngl 4 4 4

Where n; +nq9 +n3 = N.
The drunk meets if n; = ny the probability that they meet after N-steps irrespective

of the number of step n3 which leave their separation unchanged,

N
N! I \™ /1 \"™/1\™
P = I — _ Z
n3=

Where we have inserted a parameter x which cancels if n; = n».

By Binomial expansion



Now

/ 1\ X 2N n 2N—n
p =z A SR Y —1/2
(5) 2 s 6
Since x cancel, we choose the term where n =2N —n or N =n.

r=(3) G

Problem: 2.2- A penny is tossed 400 times. Find the probability of getting 220 heads.

We use the Gaussian approximation to Binomial distribution.

1 —(220—200)
e 2(400/4)

400
2 7

W (n) 2(0.0399)67(20/200)
W (n) =(0.0399)e ()
W (n) =(0.0399)(0.9048)
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CHAPTER 2. ELEMENTS OF PROBABILITY THEORY

Problem: 2.3- Consider a random walk problem in 1D, the probability of displacement
between S and S 4 dS being

w(S)dS = (2r52) "z (5-0?/28?

After N-steps. What is dispersion (z — )??

@-2P =31+ 3 S E-0E D)

Where (S;i—0)=l—-1=0

To find the dispersion (S; — [)? we note the probability that step length is between S
and S + ds in the %.

S s b
J— 2 — L SZ —_
1=b
N
Since (x —z)? 2252 = NS?

Problem: 2.4- Suppose that preceding problem the volume V under consideration
such that 0 << VKO << 1. What is the probability that the number of molecules in the
volume between N and N + dN.

Since % << 1 and N, is large. We use Gaussian distribution

P(N)AN = —— exp (M) AN

AN 2AN?

Quanta Publisher 10 Thermal and Statistical Physics



Problem: 2.5-

A pair of six faced dice with faces marked form 1 to 6 each thrown

simultaneously. What is the probability that sum of numbers which shown up is 6.

No. of ways in which 1st dice can fall n; = 6.

No. of ways in which 2nd dice can fall n, = 6.

Total number of equally likely ways in which dice can fall.

These 36 ways given by

N:m X Ny

N =6 x 6 = 36

It is clear form above number of ways, in which two dice can fall with sum of numbers

equal to 6 is number of favorable ways is equal to 5. Required probability

Problem: 2.6-

p="
n
5

736

Specific heat of 4.25kg/k Boltzmann constant & = 1.3851k. Calculate

the ratio of numbers of accessible microstates to 1gm of water at 300K and 300.001K.

Mass of water m =1gm

Quanta Publisher
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CHAPTER 2. ELEMENTS OF PROBABILITY THEORY

Specific heat of water =4.25J/mol/K
Initial temperature =300K
Final temperature 7"+ d7T" =300.001K
Rise of temperature =(T'+dT") — T = dT
=300.001 — 300 = 0.0001 = 10K

Heat gained by water

AQ =mCdT
=1x42x107*
=492 x 107%J

Change in entropy

_4Q
T
_42x107*

300
=1.4x 1075 Jk7!

AS

w (12) _4s
Wi k

(W2> 1.4 % 10_6
In —_—

W,/ 1.38 x 1023
Wy 17
In( —2) =1.01 x 10

Quanta Publisher 12 Thermal and Statistical Physics



Chapter 3

Formulation of Statistical Methods

SOLVED PROBLEMS

Problem: 3.1- Write an expression for partition function z if the particle obeys
Maxwell-Boltzmann distribution. Consider a system having two particles, each one
can be in any one of three Quantum states 0,c and 3¢. The system is in contact with

heat reservoir.

To find the Maxwell-Boltzmann statics, the table for configuration is

Configuration No. of states
0 € 3€ MB
rT 1
Tx 1
Tx 1
T T 2
x T 2
T x 2




CHAPTER 3. FORMULATION OF STATISTICAL METHODS

From table the partition function for Maxwell-Boltzmann statistics will be:

Zyp =1+ 4 e760 4 2¢7F 4 2e73F

Problem: 3.2- The calculation involving Fermi-Dirac statistics gives rise to integral

I,,,. Show that all these integral can be evaluated

J(k) :/ e T

o (B 1) (e + 1)

Since power series J (k) yields

J(k) =Y (ig!mfm

We expand e** in the integral
o0 ey
J(k) =
() /_oo (er+1)(e *+1)
etk |y,

- o (€ + 1) 2= ml *
Integrating the sum the yields
(tk)y™ [ e’
J(k) = d
B == | et
YU
— ml

Quanta Publisher 14 Thermal and Statistical Physics



Problem: 3.3- Radiation from the Big Bang has been doppler shifted to longer wave-
length by expansion of universe today has a spectrum corresponding to that of a
black-body at 2.7K. Find the wave-length.

From Wein’s displacement law, we have

2.898 x 103 mK

)\max -
T
2,898 x 1073mK

27K
=1.1x10"3m

Given T =2.7TK

Problem: 3.4- A dielectric solid has an index of refraction n,. Which can be assumed
to be constant up to infrared frequency. Calculate the contribution of black body
radiation in solid heat capacity at temperature 7" = 300°K. Compare this result with

the classical lattice heat capacity of 3R per mole.

The energy of a black body radiation in dielectric

— 7'('2 (kBT)4
F — [ — —_—
V=Y 15 eny

Where c is the velocity of light in the material c.
— 7'('2 (]{IBT)4
F=V— 3
15 (chy
_40n2VT4
B c

Thus Stephen-Boltzmann constant
k4
77 6023
Thus

Quanta Publisher 15 Thermal and Statistical Physics



CHAPTER 3. FORMULATION OF STATISTICAL METHODS

oOF
Co= (a—T)v

_ 160n3VT?
c

Taking its ratio with Cy = 3R gives

Cy  160n3VT?
C,  3Rc

For an order of magnitude calculation we can let V' = 10cm?/mol and n, = 1.5.

At 300K we find
.

v 10—13
Cy

Problem: 3.5- An electron in one dimensional infinite potential well defined by V(x) =
0 for —a < 2 < a and V(x) = oo otherwise goes from the n = 4,n = 2 level. The

frequency of emitted photon is 3.43 x 10'*Hz. Find the width of box.

7 - m2h%n?
" 8ma?
Given that n =1,n =2
1272h?
E,—FE, =
! 27 8ma?
1272h?
hy = 877;0,2 E1 — E2 = hv
, 12m2h?
a =
8mhv
W2 3h? _ 3h
C8mhry  8mwv
9 3(6.626 x 10_34Js)

8(9.1 x 10-31)(3.43 x 1014)
a® =79.6 x 10720m?

a=8.92x 107"

Quanta Publisher 16 Thermal and Statistical Physics



Chapter 4

Partition Function

SOLVED PROBLEMS

Problem: 4.1- A system consists of three energy levels i.e., ground level F, = 0J, F; =
0.25kgTJ and FEy = 0.77kgTJ. Calculate the partition function, also calculate the
probability of 2nd energy level.

Partition function: Let z is the partition function

z = Z e PE:
i

Where = -, Now

ERT
-1 —1 1
zZ =exp (kB—T(O)> + exp (kB—T(O.%)kBT) + exp <kB_T(O'77)kBT)
s =0 4 025 | =0T
z=1+1.2418 e’ =1
z =2.2418

Which is partition function.



CHAPTER 4. PARTITION FUNCTION

Probability:

P(E) oce™P/ksT

o—Ba/kpT
P(E) T ¢~ Bo/kpT { ¢~ B1/kpT o~ Ea/kpT
Putting the values
—0.77kg T
e kBT
P<E) — T OkgT —0.25k5T Z0.77kg T
e FBT 1+ ¢ kT ¢ FkpT
=077
P(E) T 0 ;o025 o077
46301
P(E) = 0.4630
1+ 0.77880 + 0.46301
0.46301
P(F) = = 0.20653
(E) 2.24184

Problem: 4.2- Determine the probability of an energy state above Er occupied by an
electron. Determine the probability that energy level 3kzT above the Fermi-energy

level is occupied by an electron.

1
fE(E) - 1+ e(E—Er/kpT)

Putting values

B 1
fe = 1 4 eBksT/kBT)
1
I =11
b 1
B 120.08554
1

- — 0.04743

Je 21.08554

An energies above Er the probability of state being occupied by an electron can

becomes significantly less then unity.

Quanta Publisher 18 Thermal and Statistical Physics



Problem: 4.3- Assume a Fermi-energy level exactly in the center of bandgap energy
of a Semi-conductor at 7' = 300K . Calculate the probability that energy of a state in

bottom.

Since

E—FEr=FE.— FEp
0.56 >> kgT

We can use the Boltzmann approximation

1
HE) =gt
1
N (F—Fr)/kpT
—(E-Er)/kT

=€
:e(E-i-EF)/k:BT

_0.56eV
—e~ 0.002580

=3.938 x 1071°

Problem: 4.4- Harmonic oscillator/canonical ensemble. Consider a system of N har-
monic oscillators. Which are indistinguishable, one dimensional and having same fre-
quency w.

(a) Compute partition function. (b) Find free energy.

A system of N non-integrating independent distinguishable, in thermal equilibrium at
absolute temperature,
P o1,

H:%—i—émwx

Quanta Publisher 19 Thermal and Statistical Physics



CHAPTER 4. PARTITION FUNCTION

Partition function:

6—6P2/2m6—6mw2x2/2dxdp

~
S
|

Zl(
[e's)

21( 6—5P2/2mdp / e—ﬁmw2x2/2d$

o] |7

2 2 (Bmur/2)"?

=
=
|

Zl(

~

=

I
Sk 3l 3
l\\

2 (8/2m)"?

w
~

k
(T, V) ==~

Partition function for whole system

AT, V) = (2)Y = <"%T)N

Free energy:
A=—kgTlnz
A=—kgTh {%}
A =NkgTIn (%)

Problem: 4.5- Calculate the probability of Harmonic oscillator F, = (n + %) hw in
state with n odd number if the oscillator is in contact with heat bath at temperature
T.

The probability that the harmonic oscillator is in state with n-odd numbers is given

by

1 o0 —BEn
plnyl) 2oz
2 Zn:O e_BEn

Zf;l eiﬁ(m%)m
- S e

Quanta Publisher 20 Thermal and Statistical Physics



By expansion

67,677/@/2 + 673Bﬁw/2 + 675ﬁhw/2 + 677ﬁﬁw/2 + . + 00
B 1 4 e—Blw 4 e=2Bhw 4 =35k 4. 4 o0
e P/ (1 + e‘25h‘”)
T 1/ (1 e P
e~ Bhw (1 — e*mu")
1 — e26hw
o—Bhw _ o—2Bhw

1 — e—QBfLw

By simplifying it can be written as

Quanta Publisher 21 Thermal and Statistical Physics



Chapter 5

Statistical System

SOLVED PROBLEMS

Problem: 5.1- N non-interacting bosons are in an infinite potential well defined by
V(z)=0for 0 <z < a; V(x) =00 for x <0 and z > a. Find the ground state energy

of system. What would be the ground state energy if the particles are fermions.

The energy eigenvalue of a particle in infinite square well is given by

n?m2h?

E, =
2ma?

As the particles are Bosons N-particles will be in n = 1 state, total energy

wh? ) ) )
B\ nzms,n, :2&2m(1 +1P4+17 417

2 h?

2a2m

If particle are fermions a state can have only two of them one spin up and another
spin down. Therefore, lowest state N/2 will be filled.

, 2h2
2F),2E,2Ey, -+, Enjy = E :g (12412 + (224224 --)---
ma
m2h2 N3
~ 24ma?




Problem: 5.2- Calculate the root mean square speed if nitrogen at 27°C'. Given N =
6 x 10% molecules/mole, kp = 1.38 x 10~*%rgs/k.

Temperature = T" =27 4 273 = 300K
Mol. Wt 28
N  6x10%

Mass of Nitrogen molecule = m =

m =4.66 x 10™23gm

13kT
‘/rms - 5
m

Putting the values, where k is Boltzmann constant

Vv _\/3 x 1.38 x 10716 x 300
e 4.66 x 10-23

=1/26.65 x 108
=5.16 x 10*cm/sec

Problem: 5.3- Draw the energy levels, including the spin orbit interaction for n = 3
and n = 2, state of Hydrogen atom and calculate the spin orbit double separation of
the 2p, 3p and 3d state. The Redberg constant of Hydrogen is 1.097 x 107m L.

As we know that the energy levels for n = 3 and n = 2 states of Hydrogen (z = 1)
including the spin orbit interaction.

The double separation

2*a’R

AE =————
n3(l+1)

For 2p state, n =21, [ =1

Quanta Publisher 23 Thermal and Statistical Physics



CHAPTER 5. STATISTICAL SYSTEM

(1/137)%(1.097 x 107)
8 X 2
(AE)y, =36.53m™!

(AE>2P =

For 3p staten =3, [ =1

(1/137)2(1.097 x 107)

AE)s, =
(AE)s 27 x 2
=10.82m~*
For 3d state n =3, [ =2
1/137)2(1.097 x 107
(AB), — /137 )
27 x 3 x 2
=3.61m™!

Problem: 5.4- Consider an ideal gas of N-electrons in volume V' at absolute zero.
(a) Calculate the total mean energy E of this gas.
(b) Express E in term of Fermi energy .

(a)

At T = 0 all states are filled up the energy p. Hence mean number of particle per state

is just 1. We have

E= /OM En(E)dE

2V (2m)”

=2 2 2dE
T

As  n(E)dE

Where the factor 2 is introduced since electrons have two spin states

3/2
E LM /N S12dE
0

272 h?
E :L (2m)*? 5/2
272 h?
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(b)

Since

So we have

_ 3
E=:°N
5M

Which is our required result.
Problem: 5.5- A quark having one-third the mass of a proton is confined in a cubical
box of side 1.8 x 10~ *m. Find the excitation energy in Mev form the first excited

state to the second excited state.

m2h?

2 2 2
ETL17’L27L3 - W(nl + n2 + 77/3)
And
) 62 h?
First excited state E211 = E121 = E112 =
2ma?
) ) 92 h?
First excited state E221 = E212 = E122 =
2ma?

~ 1.67262 x 10727

m
3
m =0.55754 x 107*"kg
212
AE :37r h
2ma?
14)%(1. 10734)2
AR 3(3.14)%(1.05 x 10734)

" 2(0.55754 x 1027kg)(1.8 x 10-19)
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CHAPTER 5. STATISTICAL SYSTEM

AE =9.0435 x 1071
9.0435
1.6 x 10-19J/eV

AFE =565.2MeV

AFE =

Quanta Publisher 26 Thermal and Statistical Physics



Chapter 6

Statistical Mechanics of Interacting

System

SOLVED PROBLEMS

Problem: 6.1- Use the Debye approximation to find the following thermodynamics
functions of a solid as a function of absolute temperature T'.
(a) In z, where z is partition function.

(b) The mean energy.

Partition function:

As
Inz = BN, — / In (1 — eﬁémw) dp(w)dw
0

Where

w For wp>w

ﬁe
5D(w){
0 For w>wp



CHAPTER 6. STATISTICAL MECHANICS OF INTERACTING SYSTEM

Put
V =61:N (Q)
Wwp
We find
N [«P
Inz = BN, —9— In (1 — eﬁt“’) w?dw
(JJD 0

In terms of dimensionless variables x = Shw and y = Shw, this gives

ON, 9N [V
lnz:hwl;7 ~v ), In(1 — e*)z*dx
N, 9N 21V 1 (Y 23dx
nz=y 1 0y —e )| — 2
BT Y3{n< ¢ )3] 3/0 er — 1
N,
Inz =y—2> —3NIn (1 — e_y) + Np(y)
hwp
N, 0
In 2 :hwzg —3NIn(1-— e‘eD/T) + Np (?D)
Where /{ZQD = th.
Free energy:
E——ﬁlnz——hw —Inz
Coap T T Py
Here
_ 3N %)
E=-N,+2D Dy=D (2
(RN ! (T)

E=—N,+3NkTD (%D)
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Problem: 6.2- Using heat of vaporization for water in J/g. Calculate the energy needed
to boil 50.0¢g of water at its boiling point of 100°C'

The mass of water = m =50.0g

Heat of vaporization = ) =2259 J/g

We have to find the energy is required to boil the involved amount of water

E=Qm

E =(50)(2259)
E =112950J
E =113 x 10*J
E =113 kJ

Problem: 6.3- What is the measured pressure of 10 moles of O, gas in SL container at

30°C' by using van dar Waals equation.

PV =nRT
_nRT

Given

n =10 moles
T =30°C = 303K
V =5L

Putting values
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CHAPTER 6. STATISTICAL MECHANICS OF INTERACTING SYSTEM

(10)(303)(8.314)

5
25191.42

5
P =5038.2 Pa

P =5.03 x 10 Pa

P =

Problem: 6.4- One mole of a gas obeys van dar Waals equation of state

<P+%> (V —b) = RT

and its internal energy is U = ¢T' — {z. Where a,b,c and R are constants. Calculate
Cy

U =function of (T, V)

ou ou
dU = (a—T>vdT—l— <W)Tdv

dU =dQ — PdV

Therefore

5
oU P
= (@), w=mw=nr

V3
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Problem: 6.5- Determine the 2"¢ nearest neighbor distance for IV; at 100°C' of its density
at temp is 8.83km?3.

Ni7 n =4
atomic weighted =58.70g/mol
p =8.83gkm?

Now

N
1076 =4 » g3

p n

5 (58.7)(10_6)(4)

~(6.023 x 1023)(8.83)
a =4.41 x 107%¥m?

Atomic weight "

12
a=3.61x 1071 x ﬁpm
m

a =3.61 x 10%*pm
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Chapter 7

Advanced Topics

SOLVED PROBLEMS

Problem: 7.1- Use density matrix and trace to calculate the probability of obtaining

state measurement.

If we perform a Von.Neumann measurement of state {(gx|¢r))} w.r.t a basis containing
|¢) the probability obtaining |¢) is

D @l (Wil ) =D aTo (1) (dxl16)(¢])

Z arl (k| @)|* =T, {Z Qk’¢k><¢k‘|¢><¢’}

Z%|<¢k|¢>|2 =T, (p|#) ()

The same state.
Problem: 7.2- show that

1 1 1 1
p=Sl+mlnl+ 51— n){=nl = 5[+ 2)(+z] + 5 = 2) (=]

Where



Given density operator is
.1 1
p= 51+ menl + 5| —n)(~nl

Substituting the value of | + n) and |1 — n) yield,

5 :% Kcos (g) |+ 2) + ¢ sin (g) - z)) - <(+n| cos (g) + (=2l sin (g))}
v [(sin (g) |+ 2) — e cos (g) - z>) - (<+n| sin (g) + (—2]e cos (g))]
B] cos? (g) |+ 2)(+2| + e cos (g) sin (g) | 2)(—]
+ €' cos (g) sin (g) | — 2) (42| + e?e " sin? (g)
+ sin? (g) |+ 2) (2] — e cos (g) sin (g) o) (]
_ e cog (g) sin (g) |+ 2) (42| + €6 cos® (g) o) (]
Now we are left with following expression

p :% [cos? (g) + sin? (g)} | + 2) (+2]

+3 {COSQ (g) + sin? (g)} | ) (=]

1 1
p=5l+2) (42l + 5] — 22

P

That is required result.

Quanta Publisher 33 Thermal and Statistical Physics



CHAPTER 7. ADVANCED TOPICS

Problem: 7.3- Evaluate the behavior of internal energy and specific heat of Bosons gas

in vicinity of Einstein condensation.

Let us define the function g,z for & > 0 and |z| < | by the series.
© _k

z

af = T
k=1

The function has the integral representation

1 o ze *
Wz = d a—1
Jaz I'(a) /0 T e

T, is Eular gamma function

itT >1T,
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Riemann zeta function

= 1
dR)=)
k=1
T(z) =gsa(2)"*/?
Where T is function of fugacity

T(z) = 93/2(2’)_2/3

if T'<T,, z=1. Therefore one has

Problem: 7.4- Consider a system of N quantum particles of spin zero and mass m on

d dimensions subject to a harmonic potential form
U(r) = —mwir

(a) Give expression of grand canonical function

(b) Give expression of number N of particles

(a)

The grand canonical function

d
d
Ey = hw  + —
k o (Z kz + Z)
k=1
Thus grand canonical function at temperature T’

Inz=— Zln (1 _ e*(Ek*U)/kBT)
k

The sum
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CHAPTER 7. ADVANCED TOPICS
/ 1
N - Z eEk/kBT
- Z Ek/kBT

Nd(n) is a polynomial in n of degree 1, we have

lnz——ZNd YIn(1 — ze™*m)

Where we have introduced the factuality

o — o~ (Uo=U)/kpT

(b)

The number of particles in excited state

N= Zs’m/z—l

Problem: 7.5- For a semi-conductor without impurities and with an energy gap £,

show

By kBT Qr
V=g T 75 ln( nQS)

Where the subscripts e and h refers to electron and holes.

In equilibrium

U.+ Uy, =0

ne =nh

In the limits of a low density non-interacting gas at high temperature
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U=A+ksTIn (i)

nQ
U =E, + kgTln (")
"Q
nh =nQk eUn/ksT
nh =2nge Ve/*T = pe
E T n
U, =+ kpT In nQ—
2 2 ng
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