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Chapter 1

Equilibrium Thermodynamics

SOLVED PROBLEMS
Problem: 1.1- Rewrite the van der Waals equation in the form P = G(θG, V ).

Solution

The van der Waals equation is given by

⇒ θGR =
(
P +

a

V

)
(V − b)

θGR

(V − b)
= P +

a

V

or P =
θGR

V − b
− a

V
or P = G(θG, V )

Problem: 1.2-

By writing the internal energy as a function of state U(T, V ) show that

dQ =

(
∂U

∂T

)
V

dT +

[(
∂U

∂V

)
T

+ P

]
dV

Solution

U = U(T, V )

Differentiating it, we have



CHAPTER 1. EQUILIBRIUM THERMODYNAMICS

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV (1.1)

As, from first law of thermodynamics: dQ = dU + PdV , so that

dU = dQ− PdV (1.2)

putting value of Eq.(1.2) and Eq.(1.1), we have

dQ− PdV =

(
∂U

∂T

)
V

dT +

(
∂U

∂T

)
T

dV

dQ =

(
∂U

∂T

)
V

dT +

(
∂U

∂T

)
T

dV + PdV

dQ =

(
∂U

∂T

)
V

dT +

[(
∂U

∂T

)
T

+ P

]
dV

Hence proved.

Problem: 1.3- Which one of the following is the exact differential?

1. dx = (10y + 6z) dy + 6ydz,

2. dx = (3y2 + 4yz) dy + (2yz + y2) dz,

3. dx = y4Z−1dy + zdz ?

Solution

(1).

dx = (10y + 6z) dy + 6ydz

Let dx = Ady +Bdz , where A = 10y + 6z and B = 6y.

If

(
∂A

∂z

)
y

=

(
∂B

∂y

)
z

then dx is an exact differential equation.(
∂A

∂z

)
y

=
∂

∂z
(10y + 6z) = 6(

∂B

∂z

)
z

=
∂

∂z
(6y) = 6
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Hence these are exact differentials.

(2).

dx =
(
3y2 + 4yz

)
dy +

(
2yz + y2

)
dz

Let dx = Ady +Bdz , where A = (3y2 + 4yz) and B = 2yz + y2. The given

equation is an exact differential.

If

(
∂A

∂z

)
y

=

(
∂B

∂y

)
z

Now (
∂A

∂z

)
y

=
∂

∂z

(
3y2 + 4yz

)
= 4y(

∂B

∂y

)
z

=
∂

∂y

(
2yz + y2

)
= 2z + 2y(

∂A

∂z

)
y

̸=
(
∂B

∂y

)
z

Hence, this is not an exact differential.

(3).

dx = y4z−1dy + zdz

Here dx = Ady + Bdz , where A = y4z−1 and B = z. The given equation is

an exact differential.

If

(
∂A

∂z

)
y

=

(
∂B

∂y

)
z

Let us check (
∂A

∂z

)
y

=
∂

∂z

(
y4

z

)
= −y

4

z2(
∂B

∂y

)
z

=
∂

∂y
(z) = 0

So
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CHAPTER 1. EQUILIBRIUM THERMODYNAMICS(
∂A

∂z

)
y

̸=
(
∂B

∂y

)
z

is not an exact differential.

Problem: 1.4- The equation listed below are not exact differentials. Find for each equa-

tion an integrating factor g (y, z) = yαzβ, where α and β can be any number that

will turn in into an exact differential.

1. dx = 12z2dy + 18yzdz

2. dx = 2e−zdy − ye−zdz

Solution

(1).

dx = g (y, z)
[
12z2dy + 18yzdz

]
As g (y, z) = yαzβ

dx = 12z2yαzβdy + 18yzyαzβdz

dx = 12yαz2+βdy + 18yα+1zβ+1dz

Here dx = Ady +Bdz so A = 12yαzβ+2 and B = 18yα+1zβ+1(
∂A

∂z

)
y

= 12yα (β + 2) zβ+1

(
∂B

∂y

)
z

= 18zβ+1 (α + 1) yα

dx is an exact differential, if
(

∂A
∂z

)
y =

(
∂B
∂y

)
z

i.e.,12yα (β + 2) zβ+1 = 18 (α + 1) zβ+1yα

2 (β + 2) = 3 (α + 1)

2β + 4 = 3α + 3

2β − 2α + 1 = 0

α =
2β + 1

3
and β =

3α− 1

2

So, if β = 1, α = 2+1
3

= 3
3
= 1. Hence, α = 1, β = 1.

Quanta Publisher 4 Thermal and Statistical Physics



(2).

dx = g (y, z)
[
2e−zdy − ydze−z

]
dx = yαzβ

(
2e−zdy − ye−zdz

)
dx = 2e−zyαzβdy − zβyα+1e−zdz = Ady +Bdz

A = 2e−zyαzβ and B = −e−zyα+1zβ

Now, let dx is an exact differential, so
(

∂A
∂z

)
y =

(
∂B
∂y

)
z.

Now,

(
∂A

∂z

)
y

= 2yα
(
e−z (−1) zβ + e−zβzβ−1

)
= 2yα

(
e−zβzβ−1 − e−zzβ

)(
∂B

∂y

)
z

=
∂

∂y

(
−e−zyα+1zβ

)
= − e−z (α + 1) yαzβ

Now

−2yαe−zzβ + 2yα
(
e−zβzβ−1

)
= − e−z (α + 1) yαzβ

2e−z
(
βzβ−1 − zβ

)
= − e−z (α + 1) zβ dividing byyα

2βzβ−1 − 2zβ = − (α + 1) zβdividing bye−z

2βzβ−1 = − (α + 1) zβ + 2zβ

2β =
− (α + 1) zβ + 2zβ

zβ−1

2β = − ((α + 1) + 2) zβ

zβ−1

2β =
(−α− 1 + 2) zβ

zβ−1

Quanta Publisher 5 Thermal and Statistical Physics



CHAPTER 1. EQUILIBRIUM THERMODYNAMICS

2β = z (1− α)

2β

z
= 1− α

2β

z
− 1 = − α

α = 1− 2β

z

α =
z − 2β

z

So, if α = 1, β = 0

Problem: 1.5- Differentiate

x = z2ey
2z

to get expression for dx = Ady+Bdz. Now divided by zey
2z. Is the resulting equation

an exact differential?

Solution

dx = Ady +Bdz

A =

(
dx

dy

)
z

= z2ey
2z (2zy) = 2yz3ey

2z

B =

(
dx

dz

)
y

= 2zey
2z + z2ey

2z
(
y2
)

= 2zeyz
2

+ y2z2ey
2z

dx = 2yz3ey
2zdy + (2zeyz

2

+ y2z2ey
2z)dz

Now divided by zey
2z, we get

dx = 2yz2dy +
(
2 + y2z

)
dz = A

′
dy +B

′
dz

Now, A
′
= 2yz2, B

′
= 2 + y2z (

∂A
′

∂z

)
y

= 4yz

Quanta Publisher 6 Thermal and Statistical Physics



(
∂B

′

∂y

)
z

= 2yz

It is not an exact differential, because
(

∂A
′

∂z

)
y ̸=

(
∂B

′

∂y

)
z.
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Chapter 2

Elements of Probability Theory

SOLVED PROBLEMS
Problem: 2.1- Two drunks start out together at the origin each having equal probabil-

ity of making step to the left or right along x-axis. Find the probability they meet again

after N -step. It is to be understood that the men make their steps simultaneously.

Solution

We consider the relative motion of two drunks, with each simultaneous step, they have

probability of 1
4
of decreasing their separation and 1

4
of increasing their separation. Let

the number of times each case occurs n1, n2 and n3 respectively.

W (n1, n2, n3) =
N !

n1!n2!n3!

(
1

4

)n1
(
1

4

)n2
(
1

4

)n3

Where n1 + n2 + n3 = N .

The drunk meets if n1 = n2 the probability that they meet after N -steps irrespective

of the number of step n3 which leave their separation unchanged,

P =
N∑

n3=0

N !

n1!n2!n3!

(
1

4
x

)n1
(
1

4
x

)n2
(
1

2

)n3

Where we have inserted a parameter x which cancels if n1 = n2.

By Binomial expansion



P
′
=

(
1

4
x+

1

4
x+

1

2

)N

=

(
1

2

)2N (
x1/2 + x−1/2

)2N
Now

P
′
=

(
1

2

)2N 2N∑
n

2N !

n!(2N − n)!

(
x1/2

)n (
x−1/2

)2N−n

Since x cancel, we choose the term where n = 2N − n or N = n.

P =

(
1

2

)2N
(2N)!

(N !)2

Problem: 2.2- A penny is tossed 400 times. Find the probability of getting 220 heads.

Solution

We use the Gaussian approximation to Binomial distribution.

W (n) =
1√
2π 400

4

e
−(220−200)
2(400/4)

W (n) =(0.0399)e−(20/200)

W (n) =(0.0399)e−(0.1)

W (n) =(0.0399)(0.9048)

W (n) = 0.0361
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CHAPTER 2. ELEMENTS OF PROBABILITY THEORY

Problem: 2.3- Consider a random walk problem in 1D, the probability of displacement

between S and S + dS being

w(S)dS = (2πS2)−
1
2 e−(S−l)2/2S2

After N -steps. What is dispersion (x− x̂)2?

Solution

(x− x̄)2 =
N∑
i

(Si − l)2 +
N∑
j+i

N∑
i

(Si − l)(Si − l)

Where (Si − l) =l − l = 0

To find the dispersion (Si − l)2 we note the probability that step length is between S

and S + ds in the ds
2b
.

(Si − l)2 =

l+b∫
l−b

(Si − l)2dsi
2b

=
b2

3

Since (x− x̄)2 =
N∑
i

S2 = NS2

Problem: 2.4- Suppose that preceding problem the volume V under consideration

such that 0 << V
Vo
<< 1. What is the probability that the number of molecules in the

volume between N and N + dN .

Solution

Since V
Vo
<< 1 and No is large. We use Gaussian distribution

P (N)dN =
1√

2π∆N
2
exp

(
−(N − N̄)2

2∆N̄2

)
dN

Quanta Publisher 10 Thermal and Statistical Physics



Problem: 2.5- A pair of six faced dice with faces marked form 1 to 6 each thrown

simultaneously. What is the probability that sum of numbers which shown up is 6.

Solution

No. of ways in which 1st dice can fall n1 = 6.

No. of ways in which 2nd dice can fall n2 = 6.

Total number of equally likely ways in which dice can fall.

N =n1 × n2

N =6× 6 = 36

These 36 ways given by

(1, 1)(1, 2)(1, 3)(1, 4)(1, 5)(1, 6)

(2, 1)(2, 2)(2, 3)(2, 4)(2, 5)(2, 6)

(3, 1)(3, 2)(3, 3)(3, 4)(3, 5)(3, 6)

(4, 1)(4, 2)(4, 3)(4, 4)(4, 5)(4, 6)

(5, 1)(5, 2)(5, 3)(5, 4)(5, 5)(5, 6)

(6, 1)(6, 2)(6, 3)(6, 4)(6, 5)(6, 6)

It is clear form above number of ways, in which two dice can fall with sum of numbers

equal to 6 is number of favorable ways is equal to 5. Required probability

P =
m

n

P =
5

36

Problem: 2.6- Specific heat of 4.25kg/k Boltzmann constant k = 1.3851k. Calculate

the ratio of numbers of accessible microstates to 1gm of water at 300K and 300.001K.

Solution

Mass of water m =1gm

Quanta Publisher 11 Thermal and Statistical Physics



CHAPTER 2. ELEMENTS OF PROBABILITY THEORY

Specific heat of water =4.25J/mol/K

Initial temperature =300K

Final temperature T + dT =300.001K

Rise of temperature =(T + dT )− T = dT

=300.001− 300 = 0.0001 = 10−4K

Heat gained by water

∆Q =mCdT

=1× 4.2× 10−4

=4.2× 10−4J

Change in entropy

∆S =
∆Q

T

=
4.2× 10−4

300

=1.4× 10−6Jk−1

As

ln

(
W2

W1

)
=
∆S

k

ln

(
W2

W1

)
=

1.4× 10−6

1.38× 10−23

ln

(
W2

W1

)
=1.01× 1017

Quanta Publisher 12 Thermal and Statistical Physics



Chapter 3

Formulation of Statistical Methods

SOLVED PROBLEMS
Problem: 3.1- Write an expression for partition function z if the particle obeys

Maxwell-Boltzmann distribution. Consider a system having two particles, each one

can be in any one of three Quantum states 0, ε and 3ε. The system is in contact with

heat reservoir.

Solution

To find the Maxwell-Boltzmann statics, the table for configuration is

Configuration No. of states

0 ε 3ε MB

xx 1

xx 1

xx 1

x x 2

x x 2

x x 2



CHAPTER 3. FORMULATION OF STATISTICAL METHODS

From table the partition function for Maxwell-Boltzmann statistics will be:

ZMB = 1 + e−2εβ + e−6εβ + 2e−εβ + 2e−3εβ

Problem: 3.2- The calculation involving Fermi-Dirac statistics gives rise to integral

Im. Show that all these integral can be evaluated

J(k) =

∫ ∞

−∞

eikxdx

(ex + 1)(e−x + 1)

Since power series J(k) yields

J(k) =
∞∑
n=0

(ik)m

m!
Im

Solution

We expand eikx in the integral

J(k) =

∫ ∞

−∞

eikxdx

(ex + 1)(e−x + 1)

=

∫ ∞

−∞

exeikxdx

(ex + 1)2

=

∫ ∞

−∞

exdx

(ex + 1)2

∞∑
m=0

(ik)m

m!
xm

Integrating the sum the yields

J(k) =
(ik)m

m!

∫ ∞

−∞

ex

(ex + 1)2
xmdx

=
∞∑

m=0

(ik)m

m!
Im
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Problem: 3.3- Radiation from the Big Bang has been doppler shifted to longer wave-

length by expansion of universe today has a spectrum corresponding to that of a

black-body at 2.7K. Find the wave-length.

Solution

From Wein’s displacement law, we have

λmax =
2.898× 10−3mK

T

=
2.898× 10−3mK

2.7K
Given T = 2.7K

=1.1× 10−3m

Problem: 3.4- A dielectric solid has an index of refraction no. Which can be assumed

to be constant up to infrared frequency. Calculate the contribution of black body

radiation in solid heat capacity at temperature T = 300oK. Compare this result with

the classical lattice heat capacity of 3R per mole.

Solution

The energy of a black body radiation in dielectric

F̄ =V µ̄ = V
π2

15

(kBT )
4

(cℏ)3

Where c is the velocity of light in the material c.

F̄ =V
π2

15

(kBT )
4

(cℏ)3
n3
o

=
4σn3

oV T
4

c

Thus Stephen-Boltzmann constant

σ =
π2k4

60c2ℏ3

Thus

Quanta Publisher 15 Thermal and Statistical Physics



CHAPTER 3. FORMULATION OF STATISTICAL METHODS

Cv =

(
∂F̄

∂T

)
v

=
16σn3

oV T
3

c

Taking its ratio with CV = 3R gives

Cv′

Cv

=
16σn3

oV T
3

3RC

For an order of magnitude calculation we can let V = 10cm3/mol and no = 1.5.

At 300K we find

Cv′

Cv

≈ 10−13

Problem: 3.5- An electron in one dimensional infinite potential well defined by V (x) =

0 for −a ≤ x ≤ a and V (x) = ∞ otherwise goes from the n = 4, n = 2 level. The

frequency of emitted photon is 3.43× 1014Hz. Find the width of box.

Solution

En =
π2ℏ2n2

8ma2

Given that n = 1, n = 2

E1 − E2 =
12π2ℏ2

8ma2

hν =
12π2ℏ2

8ma2
∵ E1 − E2 = hν

a2 =
12π2ℏ2

8mℏν

a2 =
3ℏ2

8mℏν
=

3ℏ
8mν

a2 =
3(6.626× 10−34Js)

8(9.1× 10−31)(3.43× 1014)

a2 =79.6× 10−20m2

a =8.92× 10−10m
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Chapter 4

Partition Function

SOLVED PROBLEMS

Problem: 4.1- A system consists of three energy levels i.e., ground level Eo = 0J, E1 =

0.25kBTJ and E2 = 0.77kBTJ . Calculate the partition function, also calculate the

probability of 2nd energy level.

Solution

Partition function: Let z is the partition function

z =
∑
i

e−βEi

Where β = 1
kBT

, Now

z =exp

(
−1

kBT
(0)

)
+ exp

(
−1

kBT
(0.25)kBT

)
+ exp

(
1

kBT
(0.77)kBT

)
z =e0 + e−0.25 + e−0.77

z =1 + 1.2418 eo = 1

z =2.2418

Which is partition function.



CHAPTER 4. PARTITION FUNCTION

Probability:

P (E) ∝e−E/kBT

P (E) =
e−E2/kBT

e−Eo/kBT + e−E1/kBT e−E2/kBT

Putting the values

P (E) =
e

−0.77kBT

kBT

e
−0kBT

kBT + e
−0.25kBT

kBT + e
−0.77kBT

kBT

P (E) =
e−0.77

e0 + e−0.25 + e−0.77

P (E) =
0.46301

1 + 0.77880 + 0.46301

P (E) =
0.46301

2.24184
= 0.20653

Problem: 4.2- Determine the probability of an energy state above EF occupied by an

electron. Determine the probability that energy level 3kBT above the Fermi-energy

level is occupied by an electron.

Solution

fE(E) =
1

1 + e(E−EF /kBT )

Putting values

fE =
1

1 + e(3kBT/kBT )

fE =
1

1 + e3

fE =
1

1 + 20.08554

fE =
1

21.08554
= 0.04743

An energies above EF the probability of state being occupied by an electron can

becomes significantly less then unity.

Quanta Publisher 18 Thermal and Statistical Physics



Problem: 4.3- Assume a Fermi-energy level exactly in the center of bandgap energy

of a Semi-conductor at T = 300K. Calculate the probability that energy of a state in

bottom.

Solution

Since

E − EF = Ec − EF

0.56 >> kBT

We can use the Boltzmann approximation

f(E) =
1

1 + e(E−EF )/kBT

≈
1

e(E−EF )/kBT

=e−(E−EF )/kBT

=e(E+EF )/kBT

=e−
0.56eV
0.002580

=3.938× 10−10

Problem: 4.4- Harmonic oscillator/canonical ensemble. Consider a system of N har-

monic oscillators. Which are indistinguishable, one dimensional and having same fre-

quency ω.

(a) Compute partition function. (b) Find free energy.

Solution

A system of N non-integrating independent distinguishable, in thermal equilibrium at

absolute temperature,

H =
P 2

2m
+

1

2
mω2x2

Quanta Publisher 19 Thermal and Statistical Physics



CHAPTER 4. PARTITION FUNCTION

Partition function:

z1(T, V ) =
1

n

∫
e−βP 2/2me−βmω2x2/2dxdp

z1(T, V ) =
1

n

∫ ∞

−∞
e−βP 2/2mdp

∫ ∞

−∞
e−βmω2x2/2dx

z1(T, V ) =
4

n

[√
π

2

1

(β/2m)1/2

][√
π

2

1

(βmω2/2)1/2

]
z1(T, V ) =

kBT

ℏω

Partition function for whole system

z(T, V ) = (z1)
N =

(
kBT

ℏω

)N

Free energy:

A =− kBT ln z

A =− kBT ln

[
kBT

ℏω

]
A =NkBT ln

(
ℏω
kBT

)
Problem: 4.5- Calculate the probability of Harmonic oscillator En =

(
n+ 1

2

)
ℏω in

state with n odd number if the oscillator is in contact with heat bath at temperature

T .

Solution

The probability that the harmonic oscillator is in state with n-odd numbers is given

by

P

(
n+

1

2

)
=

∑∞
n=1 e

−βEn∑∞
n=0 e

−βEn

=

∑∞
n=1 e

−β(n+ 1
2)ℏω∑∞

n=0 e
−nβℏω
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By expansion

=
e−βℏω/2 + e−3βℏω/2 + e−5βℏω/2 + e−7βℏω/2 + · · ·+∞

1 + e−βℏω + e−2βℏω + e−3βℏω + · · ·+∞

=
e−βℏω/

(
1 + e−2βℏω

)
1/ (1 + e−βℏω)

=
e−βℏω

(
1− e−βℏω

)
1− e−2βℏω

=
e−βℏω − e−2βℏω

1− e−2βℏω

By simplifying it can be written as

P =
eβℏω − 1

e2βℏω

P

(
n+

1

2

)
=

eβℏω − 1

e2βℏω − 1
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Chapter 5

Statistical System

SOLVED PROBLEMS
Problem: 5.1- N non-interacting bosons are in an infinite potential well defined by

V (x) = 0 for 0 < x < a; V (x) = ∞ for x < 0 and x > a. Find the ground state energy

of system. What would be the ground state energy if the particles are fermions.

Solution

The energy eigenvalue of a particle in infinite square well is given by

En =
n2π2ℏ2

2ma2

As the particles are Bosons N -particles will be in n = 1 state, total energy

En1,n2,n3,···nγ =
π2ℏ2

2a2m
(12 + 12 + 12 + · · · 12)

E =
π2ℏ2

2a2m

If particle are fermions a state can have only two of them one spin up and another

spin down. Therefore, lowest state N/2 will be filled.

2E1, 2E, 2E3, · · · , EN/2 = E
′
=
π2ℏ2

2ma
(12 + 12) + (22 + 22 + · · · ) · · ·

Eo =
π2ℏ2N3

24ma2



Problem: 5.2- Calculate the root mean square speed if nitrogen at 27oC. Given N =

6× 1023 molecules/mole, kB = 1.38× 10−16ergs/k.

Solution

Temperature = T =27 + 273 = 300K

Mass of Nitrogen molecule = m =
Mol.Wt

N
=

28

6× 1023

m =4.66× 10−23gm

Vrms =

√
3kT

m

Putting the values, where k is Boltzmann constant

Vrms =

√
3× 1.38× 10−16 × 300

4.66× 10−23

=
√
26.65× 108

=5.16× 104cm/sec

Problem: 5.3- Draw the energy levels, including the spin orbit interaction for n = 3

and n = 2, state of Hydrogen atom and calculate the spin orbit double separation of

the 2p, 3p and 3d state. The Redberg constant of Hydrogen is 1.097× 107m−1.

Solution

As we know that the energy levels for n = 3 and n = 2 states of Hydrogen (z = 1)

including the spin orbit interaction.

The double separation

∆E =
z4a2R

n3(l + 1)

For 2p state, n = 2l, l = 1
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(∆E)2p =
(1/137)2(1.097× 107)

8× 2

(∆E)2p =36.53m−1

For 3p state n = 3, l = 1

(∆E)3p =
(1/137)2(1.097× 107)

27× 2

=10.82m−1

For 3d state n = 3, l = 2

(∆E)3d =
(1/137)2(1.097× 107)

27× 3× 2

=3.61m−1

Problem: 5.4- Consider an ideal gas of N -electrons in volume V at absolute zero.

(a) Calculate the total mean energy Ē of this gas.

(b) Express Ē in term of Fermi energy µ.

Solution

(a)

At T = 0 all states are filled up the energy µ. Hence mean number of particle per state

is just 1. We have

Ē =

∫ µ

0

En(E)dE

As n(E)dE =
2V

4π2

(2m)3/2

ℏ2
e1/2dE

Where the factor 2 is introduced since electrons have two spin states

Ē =
V

2π2

(2m)3/2

ℏ2

∫ µ

0

e3/2dE

Ē =
V

2π2

(2m)3/2

ℏ2
µ5/2
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(b)

Since

µ =
ℏ2

2m

(
3π2N

γ

)3/2

So we have

Ē =
3

5
Nµ

Which is our required result.

Problem: 5.5- A quark having one-third the mass of a proton is confined in a cubical

box of side 1.8 × 10−15m. Find the excitation energy in Mev form the first excited

state to the second excited state.

Solution

En1n2n3 =
π2h2

2ma2
(n2

1 + n2
2 + n2

3)

And

First excited state E211 = E121 = E112 =
6π2ℏ2

2ma2

First excited state E221 = E212 = E122 =
9π2ℏ2

2ma2

m =
1.67262× 10−27

3

m =0.55754× 10−27kg

∆E =
3π2ℏ2

2ma2

∆E =
3(3.14)2(1.05× 10−34)2

2(0.55754× 10−27kg)(1.8× 10−15)
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∆E =9.0435× 10−11J

∆E =
9.0435

1.6× 10−19J/eV

∆E =565.2MeV
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Chapter 6

Statistical Mechanics of Interacting

System

SOLVED PROBLEMS

Problem: 6.1- Use the Debye approximation to find the following thermodynamics

functions of a solid as a function of absolute temperature T .

(a) ln z, where z is partition function.

(b) The mean energy.

Solution

Partition function:

As

ln z = βNη −
∫ ∞

0

ln
(
1− eβ

1
2
mω
)
δD(ω)dω

Where

δD(ω)

{ 3V
2π2 e

3ω2 For ωD>ω

0 For ω>ωD
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Put

V = 6π2N

(
C

ωD

)
We find

ln z = βNη − 9
N

ωD

∫ ωD

0

ln
(
1− eβtω

)
ω2dω

In terms of dimensionless variables x = βℏω and y = βℏω, this gives

ln z =
∂Nη

ℏωD

− 9N

Y 3

∫ y

0

ln(1− ex)x2dx

ln z =Y
Nη

ℏωD

− 9N

Y 3

[
ln(1− e−x)

x3

3

]y
− 1

3

∫ y

0

x3dx

ex − 1

ln z =y
Nη

ℏωD

− 3N ln
(
1− e−y

)
+ND(y)

ln z =
Nη

ℏωD

− 3N ln
(
1− e−θD/T

)
+ND

(
θD
T

)
Where kθD = ℏωD.

Free energy:

Ē = − ∂

∂β
ln z = −ℏωD

∂

∂y
ln z

Here

Ē =−Nη +
3N

β
Dy ∵ Dy = D

(
θD
T

)
Ē =−Nη + 3NkTD

(
θD
T

)
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Problem: 6.2- Using heat of vaporization for water in J/g. Calculate the energy needed

to boil 50.0g of water at its boiling point of 100oC

Solution

The mass of water = m =50.0g

Heat of vaporization = Q =2259 J/g

We have to find the energy is required to boil the involved amount of water

E =Qm

E =(50)(2259)

E =112950J

E =113× 103J

E =113 kJ

Problem: 6.3- What is the measured pressure of 10 moles of O2 gas in SL container at

30oC by using van dar Waals equation.

Solution

PV =nRT

P =
nRT

V

Given

n =10 moles

T =30oC = 303K

V =5L

Putting values
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P =
(10)(303)(8.314)

5

P =
25191.42

5

P =5038.2 Pa

P =5.03× 103 Pa

Problem: 6.4- One mole of a gas obeys van dar Waals equation of state(
P +

a

V 2

)
(V − b) = RT

and its internal energy is U = cT − a
V
. Where a, b, c and R are constants. Calculate

CV

Solution

U =function of (T, V )

dU =

(
∂U

∂T

)
v

dT +

(
∂U

∂V

)
T

dV

dU =dQ− PdV

Therefore

dQ =

(
∂U

∂T

)
v

dT +

[(
∂U

∂V

)
T

+ P

]
dV

CV =

(
∂U

∂T

)
= C(

∂U

∂V

)
T

=
a

V 2

CV =

(
∂U

∂T

)
P

=
P(

P − 2a
V 3

)
(V − b)− b

(
P − a

V 2

)
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Problem: 6.5- Determine the 2nd nearest neighbor distance forNi at 100
oC of its density

at temp is 8.83km3.

Solution

Ni, n =4

atomic weighted =58.70g/mol

ρ =8.83gkm3

Now

Atomic weight

ρ
× 10−6 =

NA

n
× a3

a3 =
(58.7)(10−6)(4)

(6.023× 1023)(8.83)

a =4.41× 10−29m3

a =3.61× 10−10 × 1012

m
pm

a =3.61× 102pm
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Chapter 7

Advanced Topics

SOLVED PROBLEMS

Problem: 7.1- Use density matrix and trace to calculate the probability of obtaining

state measurement.

Solution

If we perform a Von.Neumann measurement of state {(qk|ψk⟩)} w.r.t a basis containing
|ϕ⟩ the probability obtaining |ϕ⟩ is∑

k

qk|⟨ψk|ϕ⟩|2 =
∑
k

qkTr(|ψk⟩⟨ϕk||ϕ⟩⟨ϕ|)

∑
k

qk|⟨ψk|ϕ⟩|2 =Tr

{∑
k

qk|ψk⟩⟨ϕk||ϕ⟩⟨ϕ|

}
∑
k

qk|⟨ψk|ϕ⟩|2 =Tr(ρ|ϕ⟩⟨ϕ|)

The same state.

Problem: 7.2- show that

ρ̂ =
1

2
|+ n⟩⟨+n|+ 1

2
| − n⟩⟨−n| = 1

2
|+ z⟩⟨+z|+ 1

2
| − z⟩⟨−z|

Where



|+ n⟩ =cos

(
θ

2

)
|+ z⟩+ eiθ sin

(
θ

2

)
| − z⟩

| − n⟩ =sin

(
θ

2

)
|+ z⟩ − e−iθ cos

(
θ

2

)
| − z⟩

Solution

Given density operator is

ρ̂ =
1

2
|+ n⟩⟨+n|+ 1

2
| − n⟩⟨−n|

Substituting the value of |+ n⟩ and |1− n⟩ yield,

ρ̂ =
1

2

[(
cos

(
θ

2

)
|+ z⟩+ eiθ sin

(
θ

2

)
| − z⟩

)
·
(
⟨+n| cos

(
θ

2

)
+ ⟨−z|eeiθ sin

(
θ

2

))]
+

1

2

[(
sin

(
θ

2

)
|+ z⟩ − e−iθ cos

(
θ

2

)
| − z⟩

)
·
(
⟨+n| sin

(
θ

2

)
+ ⟨−z|eiθ cos

(
θ

2

))]
ρ̂ =

[
1

2

]
cos2

(
θ

2

)
|+ z⟩⟨+z|+ e−iθ cos

(
θ

2

)
sin

(
θ

2

)
|+ z⟩⟨−z|

+ eiθ cos

(
θ

2

)
sin

(
θ

2

)
| − z⟩⟨+z|+ eiθe−iθ sin2

(
θ

2

)
+ sin2

(
θ

2

)
|+ z⟩⟨+z| − e−iθ cos

(
θ

2

)
sin

(
θ

2

)
|+ z⟩⟨+z|

− eiθ cos

(
θ

2

)
sin

(
θ

2

)
|+ z⟩⟨+z|+ eiθe−iθ cos2

(
θ

2

)
|+ z⟩⟨+z|

Now we are left with following expression

ρ̂ =
1

2

[
cos2

(
θ

2

)
+ sin2

(
θ

2

)]
|+ z⟩⟨+z|

+
1

2

[
cos2

(
θ

2

)
+ sin2

(
θ

2

)]
| − z⟩⟨−z|

ρ̂ =
1

2
|+ z⟩⟨+z|+ 1

2
| − z⟩⟨−z|

That is required result.
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Problem: 7.3- Evaluate the behavior of internal energy and specific heat of Bosons gas

in vicinity of Einstein condensation.

Solution

Let us define the function gαz for α > 0 and |z| < | by the series.

gαz =
∞∑
k=1

zk

k∞

The function has the integral representation

gαz =
1

Γ (α)

∫ ∞

0

dxxα−1 ze−x

1− ze−x

Tα is Eular gamma function

ρ =
1

λ3B(To)

λB(T ) =

(
h2

2πkBT

)1/2

The thermal De-Broglie length

p(T ) = T

(
T

To

)3/2

g5/2(z(T ))

Where z(T ) satisfies the equation(
T

To

)3/2

g3/2(z(T )) = 1

The energy of the per particle

E(T ) =
3

2
p(T ) =

3

2
T

(
T

To

)3/2

g5/2(z(T ))

if T > Tc (
Tc
To

)3/2

g3/2(1) = 1
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Riemann zeta function

z(R) =
∞∑
k=1

1

kα

T (z) =g3/2(z)
−2/3

Where T is function of fugacity

T (z) = g3/2(z)
−2/3

if T < Tc, z = 1. Therefore one has

E =
3

2
T

(
T

To

)3/2

g3/2(1)

Problem: 7.4- Consider a system of N quantum particles of spin zero and mass m on

d dimensions subject to a harmonic potential form

U(r) =
1

2
mω2

or
2

(a) Give expression of grand canonical function

(b) Give expression of number N
′
of particles

Solution

(a)

The grand canonical function

Ek = ℏωo

(
d∑

k=1

ki +
d

z

)

Thus grand canonical function at temperature T

ln z = −
∑
k

ln
(
1− e−(Ek−U)/kBT

)
The sum
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N
′
=
∑
k′

1
eEk/kBT

z−1

=
∞∑
n=1

Nd(n)
eEk/kBT

z−1

Nd(n) is a polynomial in n of degree 1, we have

ln z = −
∞∑
n=0

Nd(n) ln(1− ze−kn)

Where we have introduced the factuality

z = e−(Uo−U)/kBT

(b)

The number of particles in excited state

N =
∞∑
n=0

Nd(n)

skn/(z − 1)

Problem: 7.5- For a semi-conductor without impurities and with an energy gap Eg

show

Ue =
Eθ

2
+
kBT

2
ln

(
n
Qk

nQs

)
Where the subscripts e and h refers to electron and holes.

Solution

In equilibrium

Ue + Uh =0

ne =nh

In the limits of a low density non-interacting gas at high temperature
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U =∆+ kBT ln

(
n

nQ

)
U =Eg + kBT ln

(
ne

n
′
Q

)
nh =nQk

′
eUn/kBT

nh =2nQe
−Uo/kBT = ne

Ue =
Eg

2
+
kBT

2
ln

(
n
Qn

nQ

)
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