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Chapter 1

Origins of Quantum Mechanics

SOLVED PROBLEMS

Problem: 1.1- How much energy is required to remove an electron from the n= 8 state
of a hydrogen atom?

Energy of the n = 8 state of hydrogen atom is

—13. —13.
E/o 130V oy T30V g by

n? ]2

Problem: 1.2- Calculate the maximum wavelength that hydrogen in its ground state
can absorb.
Maximum wavelength correspond to minimum energy. Hence the jump from ground

state to first excited state gives the maximum A. Energy can be calculated from

E = —13.6 eV

n2

Energy of the ground state (n = 1) = —13.6 eV

Energy of the first excited state (n = 2) = —13.6/4 = —3.4 eV

Maximum wavelength corresponds to the energy —3.4 — (—13.6) = 10.2 eV
c  he E

c=f\N = )\:?_E '.'E:hfandfzﬁ



CHAPTER 1. ORIGINS OF QUANTUM MECHANICS

h
Maximum wavelength A\ = EC

~(6.626 x 107**Js) x (3.0 x 10°m/s)
(10.2)(1.6 x 10-9)

A=122x 107%m = 122 nm

Problem: 1.3- An electron in the n = 2 state of hydrogen remains there on the average
of about 1078 s, before making a transition to n = 1 state.
(i) Estimate the uncertainty in the energy of the n=2 state.

(ii) What fraction of the transition energy is this?

h 6.626 x 1073%Js
' AE > =
(7) T An At 47 x 10-8s

= 0.527 x 107%6J = 3.29 x 10 %V
(17) Energy of n =2 — n = ltransition
= — 34— (—13.6) = 10.2eV

AE 329 x 107%V
E — 10.2eV
Problem: 1.4- The uncertainty in the velocity of a particle is equal to its velocity. If

Fraction = —3.23%x107°

Ap - Az =2 h, show that the uncertainty in its location is its de Broglie wavelength.

Given Av = v Then,

Ap =mAv=mv =p

Arx Ap=h or Ax-p=h

Problem: 1.5- Calculate the probability of finding the particle in the region —1 < z < 1,

represented by the wavefunction

1 1

Y= 7 vEr

probability of finding the particle in the region —1 < z < 1 is given by
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Chapter 2

Mathematical Tools of Quantum

Mechanics

SOLVED PROBLEMS

Problem: 2.1- Consider the states |¢)) = 3i|¢p1) — Ti|p2) and |x) = — |p1) + 2i|p2)
where |¢1) and |¢9) are orthonormal. Calculate [ + x) and (¥ + x|

The calculation of [ + x) is straightforward:

[+ x) = [¥) +[x) = (Bilgr) — Tilda)) + (= [¢1) + 2 |¢2))
= (=14 3i) |¢1) — 5t [2)
This leads to the expression (1) + x|

(W + x| = (=14 3i) (1| + (=59)"(¢2|
= (=1 = 3i)(¢1| + 5i(e2]



Problem: 2.2- Find the Hermitian adjoint of f(A) = (1 A+ 3212) (1 —2iA - 9212) /(5+
7A)
Since the Hermitian adjoint of an operator function f(A) is given by fT(4) = f (AT),

we can write

(1 Ty 3212) (1 — 24— 9A2> T B (1 oA - 9A2T> (1 AT 4 3A2T)

54+ T7A 5+ TAT

Problem: 2.3- Show that the operator i) (| is a projection operator only when [¢) is

normalized.

It is easy to ascertain that the operator [) (2| is Hermitian, since (|w)(1])" = [4){¢].

As for the square of this operator, it is given by

()W) = ()DL = [9) (@) (W] = [¥) (Y]

Thus, if |1) is normalized, we have (]1)(¢])* = |)(2)|. In sum, if the state [¢) is
normalized, the product of the ket |¢)) with the bra (¢| is a projection operator.

Problem: 2.4- Show that the commutator of two Hermitian operators is anti-Hermitian.

If A and B are Hermitian, we can write

Problem: 2.5- Show that if A~! exists, the eigenvalues of A~! are just the inverse of
those of A.

Since A~'A = I we have on the one hand
AT Ay = |y)

and on the other hand
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CHAPTER 2. MATHEMATICAL TOOLS OF QUANTUM MECHANICS

AT A = ATHAW)) = aA™M )
Combining the previous two equations, we obtain

aA7M ) = |9)

hence

~ 1
A7) = 5|¢>

This means that [¢) is also an eigenvector of A~! with eigenvalue 1/a. That is, if A~!

exists, then

Ay =aly) = A7) =)
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Chapter 3

Fundamentals of Quantum

Mechanics

SOLVED PROBLEMS

Problem: 3.1- Can we measure the kinetic and potential energies of a particle simulta-
neously with arbitrary precision?
The operator for kinetic energy, T' = — (h*/2m) V2. The Operator for potential energy,
V = V(r). Hence,

h2 2 7 _ hz 2 hz 2
[_%v ,V} b=—g —VA(VY) =V (—%V ) VY
h2

= —%(Wv)w#o

since the operators of the two observables do not commute, simultaneous measurement
of both is not possible. Simultaneous measurement is possible if V' is constant or linear

in coordinates.



CHAPTER 3. FUNDAMENTALS OF QUANTUM MECHANICS

Problem: 3.2- Show that the operator U = 1“2‘ is unitary. Provided A is Hermitian.

U= (720 () = (o) ()
14+iA
Ul = <1+LA><1iZA> Af=4

Uu=1

Similarly, UUT = I. Hence U is unitary operator.
Problem: 3.3- If A and B are Hermitian operators, show that (AB + BA) is Hermitian

ie. {A,B} = {A,B).

Since A and B are Hermitian, we have AT = A and B = B. So,

{A,B}Yl = (AB + BA)
= BYA" + ATBY = BA + AB
— AB + BA
= {4, B}

Problem: 3.4- Consider a system whose state is given in terms of an orthonormal set
of three vectors: |p1), |¢a), [¢p3) as:
V3 2 V2
) = T|¢1> + §|¢2> +t 5 |¢3)

verify that |¢) is normalized. Then calculate the probability of finding the system in
any one of the state |¢1), |¢2), and|¢p3). Verify that total probability is equal to one.

Using the orthonormality condition (¢;|¢x) = 0, where j,k = 1,2,3 we can verify

that |¢) is normalized.

() = < (ilgn) + 5 (alga) + 2 (Golgs) = 3+ 5+ 2 =1

O |

Since, |¢) is normalized, the probability of finding the system in |¢;) is given by

Quanta Publisher 8 Quantum Mechanics-I



V3
3

wl%

P = |<¢1]1p>\2 = (p1|p1) + <¢1’¢2> <¢1|¢3> = é

Since, (¢1|¢1) = 1 and (¢p1|p2) = (¢1]|¢3) = 0. Similarly, from the relations (¢ps|po) = 1
and (pa|d1) = (@2|p3) = 0, we obtain the probability of finding the system in |¢s):

O >

Py = (ol = |2 {oaln) | =

-|;

As for (¢s]¢3) = 1 and (¢3]|d1) = (P3]P2) = 0, they lead to the probability of finding
the system in |¢s3):

- |2 ouion [ = 2

Py = [(¢s]i)]? 5

As expected, the total probability is equal to one

W

1 2
P=P+P+PF = §+—+§ =1

Ne)

Problem: 3.5- Give the mathematical representation of a spherical wave traveling out-

ward from a point and evaluate its probability current density.

The mathematical representation of a spherical wave travelling outwards from a point

is given by
A
U(r) = —exp(ikr)
r
where A is a constant and k is the wave vector. The probability current density
J = 5- WV =" VY)
m
_ ﬂ|A|2 |:6ikr <eikr> B efikrv (eikr>:|
2m T r r r
_ ﬂ‘AP |:€ikr (_%eikr B S_ZW) B —zkr <Zk} B 6il;r):|
r r r r r

ih —2ik 9
—2m‘A| < r2 ) mr2|A‘
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Chapter 4

One-Dimensional Problems

SOLVED PROBLEMS

Problem: 4.1- For an electron in a one-dimensional infinite potential well of width 1

A, calculate the separation between the two lowest energy levels

2%2,.2
B, = 1A = 101
2ma?
b g 3T 3xw x (1055 x 107 s)
27N T 2ma?  2(9.1 x 10-3kg) 10-2°m?

=1.812x 107) = 113.27eV

Problem: 4.2- An electron in a one-dimensional infinite potential well, defined by
V(z) =0 for —a <z < a and V(z) = co otherwise, goes from the n =4 to the n =2
level. The frequency of the emitted photon is 3.43 x10'* Hz. Find the width of the
box.

As we know that
2 h2n?

E, =
2ma?

127212
B —Fy= " _orhy -+ E,— E,=16E, — AE,

2ma?



, 6mh?
a g
2mmhuv

o, 37h  3(1.055 x 10734Js) x 3.14

a =

mv (9.1 x 1073kg) (3.43 x 1014s~1)

a*=179.6 x 107 m?
a=28.92x10"""m or 2¢ = 17.84 x 10~'"'m

Problem: 4.3- The wave function of a particle confined in a box of length a is

Y = 2 sm(ﬂ—x)

a a

Calculate the probability of finding the particle in the region 0 < z < a/2.

The required probability is

a
1 [o? 2
= —/ <1 — Cos _7m> dx (4.1)
a Jo a

:—/ dx——/ cos 2L dr = =
a Jo a Jo a 2

Problem: 4.4- Consider the ket [¢)) = 3 |. (a) Find |¢)* and (¥|. (b) is |¢)

44
normalized? If not normalized it

(a) The expression of |¢)* and (1| are give by

Quanta Publisher 11 Quantum Mechanics-I



CHAPTER 4. ONE-DIMENSIONAL PROBLEMS

It is clear that [¢)* # (.
(b) The norm of [¢) is given by

Wiy = (i 3 —4i) | 3
43
= ()(=1) + (3)(3) + (—4i)(43)

=—i*+9—16i* = 26

Thus [¢) is not normalized. However, if we multiply it with \/%76’ it becomes normalized

Problem: 4.5- Electrons with energies 1 eV are incident on a barrier 5 eV high 0.4 nm

wide. Evaluate the transmission probability.

The transmission probability T is given by

2m (Vy — E)
h

T = e—QOza7 a =

V2 (9.1 x 10-31kg) (4eV) (1.6 x 10-19J /eV)
(1.054 x 10—34Js)

a=1024 x 10°m~!

aa = (10.24 x 10°m™") (0.4 x 10~"m) = 4.096

1 1

_ _ _ —4
T = % = 68-192 =277 x 10

Quanta Publisher 12 Quantum Mechanics-I



Chapter 5

Angular Momentum

SOLVED PROBLEMS

Problem: 5.1- Evaluate the commutator [[:I, f}y] in the momentum representation.

[Le, Ly| = [yp. — 20y, 2Pe — D] = [YD=, 2Dz) — (Y=, TD:] — [2Dy, 2Ds) + [2Dy, ¥D-]
= Yps [Pz, 2] — 0 — 0+ pyx [2,p.]

In the momentum representation [z, p,] = ih
(L., L,] = ih (zp, — yp,) = ihL,
Problem: 5.2- Find the energy level of a spin s = 3/2 particle whose Hanmiltonian is

given by

~

a A A A A
H= 5 (S2+5;-252) - = 5.

St

where o and [ are constants. Are these levels degenerate?

Rewriting H in the form,

~ a A o A A
H =5 (5" —352) -

St
w
N
N
I
n
]
_|_
n
%)
|
N
)



CHAPTER 5. ANGULAR MOMENTUM

We see that H is diagonal in the {|s,m)} basis:

By = (s, m|H|s,m) = (s,m| 5 (8%~ 382)|s,m) — (s, m|% S.[s,m)

= % [h28(8 +1)— 3h2m2} — %hm
3 /(3
=ag (5—1—1) — 3am?® + Bm
15
=7 m(3am + )
where the quantum number m takes any of the four values m = —%, —%, %, % Since,

E,, depends on m, the energy levels of this particle are thus four fold degenerate.
Problem: 5.3- Y, (0, ¢) form a complete set of orthonormal functions of (6, ¢).
Prove that 33,520 Vi) (Vi | = 1.

ml:—l
On the basis of expansion theorem, any function of # and ¢ may be expanded in the

form

0(0,0) =D > Cim,Yim, (0, 0)
l my

In Dirac’s notation,
[0) =2 Cmy [Yim,)
I my

Operating from left by (Yl/m;\ and using the orthonormality relation

<Y2/m”Y2ml> = 5l’l(smlm; ; Clml = <Y2ml‘w>

Substituting this value of Cj,,,, we obtain

) =" ) Vi) (Vi [)

I my=—I1

From this relation it follows that

DD Vi) Vi =1

l ml:fl
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Problem: 5.4- 1In the |jm;) basis formed by the eigenkets of J? and J,, show that
(gmy | J_ Ty | jmy) = (5 —my)(j +m; + 1)K
| Solution|
J_J.=J"—J*—hJ,
(g [T Tl my) = (Gmy |J* = T2 = hJ.| jmy)
= [ + 1) —m5 —my] B*(jmy|jm;)
since (jm;|jm;) =1

(my | T Tl gmg) = [5° = m3 + j —my] B?
= [(j +my)(j —my) + (j — my)]n?
= (j —my) + (j +m; +1)h°

Problem: 5.5- For Pauli’s matrices, prove that (i) [0, 0] = 2i0., (ii) 0,040, = i.

| Solution

(i) We have
1
S = 550, (S, Sy] = ihS,

Substituting the values of S, 5, and 5., we get

1 1 1
|:§7:L0'x, §h0y:| 5 ZhaFLO'Z

1 1
th (04, 0y] = ih2§02

0y, 0,] = 2i0,

01 00— 10
Op0y0, =

10 v 0 0-1

Quanta Publisher 15 Quantum Mechanics-I



Chapter 6

Three-Dimensional Problems

SOLVED PROBLEMS

Problem: 6.1- For the ground state of the hydrogen atom, evaluate the expectation

value of the radius vector r of the electron.

The wave function of the ground state is given by

1 1 3/2 —r
ez (@) = (%)
. 1 0 5 o T2 T2 .
(r) = | YigrbroodT = —5 [ 1 exp | —— |dr sin @dfde
Qg Jo Qg 0 0

Problem: 6.2- What is the probability of finding the Is-electron of the hydrogen atom
at distance (i) 0.5 ao, (ii) 0.9 a, (iii) ao (iv) 1.2 a, from the nucleus? Comment on the

result.

The radial probability density Pn(r) = |Ru|” 2. Then

2 r 4r? 2r
Ry = —377 OXP (——) . Pip(r) = 5 XD (——)

Qa
Qg 0



(i) Pio (0.5a0) = % _ 037

ao

.. -
(i) Pio (0.9a0) = %e 18 _ 0%6

(iii) Pro (ao) = 43;2 - %;ﬂ

i 2)2
(IV) Pl[) (12@0) = % — %023

Po(r) increases as 7 increases from 0 to ay and then decreases, indicating a maximum

at r = ag. This is in conformity with Bohr’s picture of the hydrogen atom.
Problem: 6.3- A positron and an electron form a short lived atom called positronium

before the two annihilate to produce gamma rays. Calculate, in electron volts, the

ground state energy of positronium.

The positron has a charge +e and mass equal to the electron mass. The mass p in the

energy expression of hydrogen atom is the reduced mass which, for the positronium

atom, is
Me + M me

2Mm, 2
where m, is the electron mass. Hence the energy of the positronium atom is half the

energy of hydrogen atom.

k*m. e
En:—m, n:1,2,3,...
Then the ground state energy is
13.6
—Te\/ = —6.8eV

Problem: 6.4- A quark having one-third the mass of a proton is confined in a cubical
box of side 1.8 x 10~ m. Find the excitation energy in MeV from the first excited

state to the second excited state.

As we know that
m’h? 2 2 2
Enlngng = W (nl + U + 713)
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CHAPTER 6. THREE-DIMENSIONAL PROBLEMS

First excited state: Foy; = Ei91 = Ei1a = 6m2h?

2ma?
Second excited state: Fly, = Fajo = Fiog = %
1.67262 x 10727k
m = ; & — 055754 x 10 2kg
272
AE — 3k
2ma?

B 372 (1.05 x 10734Js)?

~2(0.55754 x 10-2"kg) (1.8 x 10~15m)’
9.0435 x 10711]
1.6 x 10719J/eV

=9.0435 x 1071J =

= 565.2MeV

Problem: 6.5- An electron of mass m and charge —e moves in a region where a uniform
magnetic field B = %’ x A exists in the z-direction. Write the Hamiltonian operator

of the system.

Given B = % x A. We have

= - (0A, 04, ~ (04, 0A, ~ (0A, O0A,
B_Z<8y 3z>+j(8z 8x>+k<8x 8y>

since the field is in the z-direction,

0A, . 8Ay o O
dy 0z

04,  9A, _
0z ox 0

ox oy

0Ay 0Ar _ 0

On the basis of these equations, we can take
A,=A., =0, A,=Bzxor A= Bzj

The Hamiltonian operator

Quanta Publisher 18 Quantum Mechanics-I
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where p,, py, p. are operators.
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