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Chapter 1

Identical Particles

SOLVED PROBLEMS

Problem 1.1- Consider a one-dimensional infinite square well of width 1cm with free
electrons in it. If its Fermi energy is 2eV, what is the number of electrons inside the
well?

2232
n°m°h
E, =
2ma?
where, n = 1,2, 3, ... shows energy levels. Each level accommodate two electrons, one

spin up and the other spin down. If the highest filled level is n, then the Fermi energy,
Er=FE,.

n2 . 2ma2EF
T m2h2
(2 x 1.6 x 107197) x 2 x (9.1 x 107*' K g) (0.01m)?
(3.14)%(1.05 x 107%Js)*

n? =5.3475 x 10 — n = 2.31 x 107

n* =

The number of electrons (n) inside the well = 4.62 x 107,



Problem 1.2- N non-interacting bosons are in an infinite potential well defined by
Viz) =0for 0 <z < a; V(z) =00 for z < 0 and for z > a. Find the ground
state energy of the system. What would be the ground state energy if the particles are

fermions?

The energy eigenvalue of a particle in the infinite square well is given by

n?m2h?

E, =
2ma?

As the particles are bosons, all the N-particles will be in the n = 1 state. Hence the
total energy of system

, T2 h?

ni,n2,n3...nN = 2ma2

(124+12+1%...1%

N72Rh?
2ma?

E —

If the particles are fermions, a state can have only two of them, one spin up and the
other spin down. Therefore, the lowest % states will be filled. The total ground state

energy will be

m2h?

251+2a2+253+...+25g:E1:—2[(12+12)+(22+22)+...]
2 2ma
2 2 2 1 *h? 2 2 N ?
“1F42°+...n :6n(n+1)(2n—1—1): Sy 1“4+ 2 +...+<5>
Eo:N3W2h2
24 ma?

Problem 1.3- Sixteen non-interacting electrons are confined in a potential V (z) = oo
for v < 0and z > a; V(xz) =0, for 0 < x < a. (i) What is the energy of the least
energetic electron in the ground state? (ii) What is the energy of the most energetic

electron? (iii) What is the Fermi energy Er of the system?

(i) The least energetic electron in the ground state is given by
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CHAPTER 1. IDENTICAL PARTICLES

T2 h?

2ma?

Ey

(ii) In the given potential, the energy eigenvalue is

n?m2h?

E, =
2ma?

As two electrons can go into each of the states n = 1,2,3,... the highest filled level
will have n = 8 and its energy will be
82r2h?

Fe —
8 2ma?

(iii) The energy of the highest filled state is the Fermi energy Er. Hence,

E :n27r2h2
2ma?
647%h? 3212 h?
Ef p— pr—
2ma? ma?
Each state has 2 electrons
6472 h?
B, =
f ma?

Problem 1.4- Prove that it is impossible to construct a completely anti-symmetric spin
function for three electrons. (Concept: Because electrons has only two spin orienta-

tions)

Let a,b,c stands for three functions and 1,2,3 for three identical particles. In the
function a (1)b(2)c(3), particle 1 is in a, particle 2 is in b, and particle 3 is in c.
Let us proceed without specifying that these functions correspond to space or spin

functions. The third-order slater determinant for the case is

I
Si-
D
[yl
—~
—_
SN—
[yl
—
[\
S—
S
—
w2
N—
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This is completely anti-symmetrized as interchange of two spins amount to interchang-
ing two columns of the determinant, which multiplies it by -1. Let us now specify the
functions a, b, ¢ as that due to electron spins. Let a = a,b = 5,¢ = [ in the above

determinant. The determinant reduces to

a()a(a()
1

A LOEICET)

51)5(2) 53)

As the second and third rows of the determinant are identical, its value is zero. In
whatever way we select a, b, ¢, the two rows of the determinant will be equal. Therefore,
we can not construct a completely anti-symmetric three-electron spin function.
Problem 1.5- The valence electron in the first excited state of an atom has the electronic
configuration 3s',3pt. (i) Under L-S coupling what value of L and S are possible? ii

Write the spatial part of their wave-functions using the single particle functions 1) (1)

and 1, (r).

i Electronic configuration 3s*, 3p'. Hence l; = 0,lb =1 ; s1=(3),s0=(3) ; L=

1, S = 0,1 ii Taking exchange degeneracy into account, the two possible space

functions are

Vs (r1)p (ra)  and g (12) 1y (11)

The symmetric combination
1
Ps = NGT [ths (r1) by (r2) + s (r2) p (r1)]
Anti-symmetric combination

1
Vs = 73 [s (r1) ¥p (r2) — s (r2) ¥y (r1)]

where N, and N, are normalization constants.

Quanta Publisher 5 Quantum Mechanics - 11



CHAPTER 1. IDENTICAL PARTICLES

Problem 1.6- Specify the symmetry of the following functions
<a)_ ¢<x1’ 132) - 4(‘r1 o I2)2 + xflfxg
3(x1—x
(b)- d(a1,22) = — s
224zi+zi—1

(c)- x(z1, w2, x3) = 6z 12275 + 227 +2X312X3+5

(a)- The function ¥ (x1,x9) is symmetric, since ¥ (xq, 1) = (21, x2)
(b)- The function ¢(xy,z5) is antisymmetric, since ¢(z2, 1) = —¢(x1,22), and ¢ is
7ero

(¢)- The function y(z1,xe,x3) is symmetric because

X(xlaan 1'3) - X(Ilv Z3, l‘g) - X(l’g, Zy, [E3) - X(an ZL'3,ZL‘1)

= X($37 1, 902) = X($3, T2, fEl)

Problem 1.7- Suppose we have two noninteracting particles, both of mass m in infinite

square well. The one particle states are:

2 . /nm (MR
@/Jn(x)—\/;sm<fx>, E,=n (W)—nK

Write wave functions:
e If particles are distinguishable.
e If particles are identical bosons.

e [f particles are identical fermions.

If particles are distinguishable, composite wave functions are,

Vning (T) = Py (2) Y, (2), Enin, = (n% + n%)’f

For example the ground state is,

2
ot = 2 (72 on (72

The first excited state is doubly degenerate;

Quanta Publisher 6 Quantum Mechanics - 11



2 2
Y1a(z) = —sin (W—xl> sin ( 7r:)32> , Ey =5K

L L L
1/) ( )_ 2 . 271'1171 . (71'1’2) Eoi = 5K &
o1 (x) = Lsm 7 sin 7 ) 5 = SO on.

If particles are identical bosons, the ground state is unchanged but 1% excited state is

non-degenerate;

2 2 2
% {sin (%) sin (%) + sin < 7;3:1) sin (%)} with energy 5K

If particles are identical fermions, the ground state is:

2 2 2
\/T_ {sin <7TTxl> sin ( 7?2) — sin ( 7;:1:1> sin <7TT$2>} with energy 5K

Problem 1.8- Find the ground state energy and wave function of a system of N nonin-

teracting identical particles that are confined to a one-dimensional, infinite well when

the particles are (a) bosons and (b) spin 5 fermions.

In the case of a particle moving in an infinite well, its energy and wave function are
e, = n?h*1?/(2ma?) and ¥, (z;) = \/2/asin(nmz;/2)

(a)- In the case where the N particles are bosons, the ground state is obtained by
pitting all the particles in the state n = 1, the energy and wave function are then
given by

Nh2r?

2ma?

N9 T 2N T T T
VU (xy, w9 oN) = 7[[1 - sin (5351) =\ ¥ sin (5951) sin (§x2> -.-sin (§$N)

(b)- In the case where the N particles are spin % fermions, each level can be occupied

E9 =g +ei4+e 4+ +e=N+e =

by at most two particles having different spin states ’%, i%> The ground state is thus
obtained by distributing the N particles among the N/2 lowest levels at a rate of two

particles per level:

Quanta Publisher 7 Quantum Mechanics - 11



CHAPTER 1. IDENTICAL PARTICLES

N/2

N/2
n’h*r?  hm? 9

E°=2+e+2+e+2+e3+ - +2+enp=2)
n=1

2ma?
N/2
If N is large we may calculate > n? by using the approximation
n=1
N/2 N/2

1 /N\*
2N 2 ~Y —_—
E n _/ndn_3(2>
n=1 1

hence the ground state will be given by

, h*m?

24ma?

E°~N

ma?

n-.

n=1

The average energy per particle is E°/N ~ N2h?mr?/(24ma?). In the case where N is

even, a possible configuration of the ground state wave function ¢°(x, zy, - -

given as follows

,JIN> is

W (x1)x(S1) Un(22)x(S2) Pr(zn)x(Sw)

U (z1)x(51) 1(22)x(S52) U1(zn)x(Sn)

Pa(z1)x(S1) a(w2) X (S2) Ua(zn)x(Sn)

Wha(21)x(S1) Un(2)x(S2) ta(zn)x(Sw)

7w | Gaa)x(S1) dsle)x(S) d(en)x(Sw)

Ws(21)x(51) s (22)x(52) Us(zn)x(Sw)
Unpp(@)x(S1)  Ynja(r2)x(S2) Uny2(zn)X(SN)
Unpp(@)x(51)  Ywvye(w2)x(S:) Unya(@n)X(Sw)

where x(S5;) = |3,

N is odd then we need to remove the last row of the determinant.

i%> is the spin state of the ith particle, with ¢ = 1,2,3,--- , N. If

Quanta Publisher
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Problem 1.9- An electron is in spin state
x=4

Normalize this state. Evaluate expectation values of S, S, .S,

To normalize the state, we apply normalization condition.

xx=1

3i
= AA(_gi 4) =1
4

= |A'9+16)=1 = |A["25=1 :>A:%

Expectation values of S;,S,, S, are

1 (10 1)1 [3
(Sa) =X Sax =< (—Si 4) 5 £ =0

i 10
1 A0 i) 3 12
_dg (L h 1 _ 12y
Bu) =X =5 (_SZ 4) 2 | 5 25
7 0 4
1 Kl 01 (3 7
(S.) = x'S.x = s (—3¢ 4> 5 - = —h
0 -1 4

Quanta Publisher 9 Quantum Mechanics - 11



CHAPTER 1. IDENTICAL PARTICLES

Problem 1.10- An electron is in spin state

Evaluate expectation values of S, S, S,

Expectation values of S, S, S, are

; (0 1 1
(Sz) = X'Sax = (1 2)5 =2h

2
; RO —1i 1
<Sy>=x5yx:(1 2)5 =0

0 9

(S.) = x'S.x = (1 2)

~

= _Qh as required

| St
(@) —
=
[u—
~
[\] —

3z (1 0} [1 15
(S%= 182 = (1 2) a'e. = 1 as bouus

Problem 1.11- Find the normalized wave function of a system of three identical bosons,

which are given in one particle.

Let 11,19, 13 be normalized one particle states.

e If all three occupied states are different, then state function of system will be;

Y= % {1(1)Y2(2)103(3) + 1 (1)02(3)03(2) + 11 (3)102(2)03(1) + 11(3)1h2(1)103(2)
+101(2)12(1)13(3) + ¥1(2)2(3) (1) }

Quanta Publisher 10 Quantum Mechanics - 1T



e If two of three filled states are identical e.g. 11(1) # ¥5(2) = 19(3), then state

function of system will be;

21
Y= \/;{%(1)%(2)103(2) + P1(2) Y2 (1)3(2) + P1(2)92(2)93(1)

e If three are in same, then state function of system will be;

¥ =1 (1)2(1)43(1)

Quanta Publisher 11 Quantum Mechanics - 1T



Chapter 2

Approximation Methods

SOLVED PROBLEMS

Problem: 2.1- A trial function ¢ differs from an eigen-function ¥ g so that ¢ = ¥g+agps,
where p and ¢; are orthonormal and o << 1. Show that (H) differs from F only by
a term of order o? and find this term. Given that Hyp = Evp

(H) — (01H|p) (e +ag) |H| (5 + agr))

@18)  ((Wn+ady)|(bn+ad))
(Ve |H|YE) +a (g [H|¢1) + a(p1 [H|E) + o (¢1 |H| ¢1)

(Welve) +aWr|dr) +ald [Ye) +a? (¢ ]d1)

(H) =

Since H is Hermitian,

(Vp[H|d1) = E(Vp|¢1) =0

E+a?{$, |H| ¢
- a1i;|2 | 1>=E+@2<¢1\H|¢1>

As 1+ a? 2 1. Hence the result (H) differs from E by the term o2 (¢; |H| ¢1).

(H)




Problem: 2.2- The unperturbed wave-functions for harmonic oscillator is

= (22) e (7

If a small perturbation
v Ar,x >0
0,2<0

acts on the system, evaluate the first order correction to the ground state energy.

The given H, is the one dimensional simple harmonic oscillator. Hence the unperturbed

ground state energy is

6101 () o ()

The first order correction to the energy is

EW

(o () [A2| s (2))

o0

(%);)\/x.exp (_mc;;x )dm

0
> h A h

EAITAmiiaaon L ax\V (e
n (Fm) 3 2mw 2V mm

Problem: 2.3- Solve the following one-dimensional infinite potential well, which is
modified at the bottom by a perturbation V,(z)

S

0, for0 < x < a; Vo, 0<x<
Vi(z) = , Vp(z) =

00, elsewhere; 0, eleswhere

S

Calculate the energy F,. Using the WKB method and compare it with where the
V., << 1, the exact solution.

V(z) =0for 0 <z < a and V () = oo elsewhere. The turning points are z; = 0

and 9 = a. The energy within the WKB approximation can be obtained using the

Quanta Publisher 13 Quantum Mechanics - 1T



CHAPTER 2. APPROXIMATION METHODS

quantization condition

a

/P(En,x)dx:mrh n=123---
0

a/2 a

/ Vv 2m(E, — V,)dx + / V2mE,dx =nmh

0 a/2

g\/ 2m<\/En —Vo+ \/En> =nrh
squaring on both side,

2 /En(Ey — Vo) =an — 2B, + Vs ¢ ap———

again squaring on both side

AE? —AE,V, =a® + AE? + V? —4a, B, + 2a,V, — AE,V,

a, Vo V2
E, =240
4 + 2 +4an

As V, is small so neglect V2 /4a,. The exact solution gives

n27r2 h2

E,=——,
2ma?

n=1,23..

The WKB solution has (n + %) in place of n. Another major difference is the allowed

values of n.

© 2ma? " 2

Problem: 2.4- Use the WKB method to calculate the transmission coefficient of a

242
EWKB Tht 5, Vo
n

particle of mass m and energy E moving in the potential barrier

Vo —ax,z >0
V(z) =
0,z <0

As the transmission coefficient is,

Quanta Publisher 14 Quantum Mechanics - 1T



T =exp 2 oy = %/ V2m(V(z) — E)dx (2.1)

where the turning point x; = 0. To get the other turning point, it is necessary that

E=V(x) =V, —axy

Vo — FE
To —
a
so, we get
Vo E
1
1=1 / Vom(V(z) = B)da
0
Vo—FE

a

_V2m [(V, — az — E)*/?
h —3a

0

2 (0 (E2E) ) (- )]

3ah a
—2v/2m 3/2 3/2 2V/2m 3/2
7T 3ah [(O) - (V- £) ] ~ 3ah (v-- %)
Put in Eq.(2.1)
44/2m 3
T= e [_W(V“ B)

Quanta Publisher 15 Quantum Mechanics - 1T



CHAPTER 2. APPROXIMATION METHODS

Problem: 2.5- A particle of mass m moves in an infinite one-dimensional box of length

2a with a potential dip as defined by

00,a << —a
V(z) = —Vo,—a <z < —%
0,—§<z<a

Find the energy of the ground state corrected to first order.

The unperturbed part of the Hamiltonian is that due to a particle in an infinite po-
tential defined by V (z) for —a < x < a and V (z) = oo otherwise. The unperturbed

ground state energy and eigen-functions are

w2 h? 1 X
= — - -
"7 8ma?’ & Va %%
The perturbation H' = —V;, —a < 2 < —%. The first order correction is
-5 £ -5
EW = _ 22 Coszgda: Pa W (1 + cos E) dx
a 2a 2a a
Vo e Voa|. mx|—%
= LB e e i T
a 2a a l-q
Vo Vo . Vo Vo
= — —+ —sin60° = —— 4+ — (0.866) = 0.195V
3 "ot 3 T g (0-866)

The ground state energy corrected to first order is

m2h?

E= = 0.195V,

ma?

Quanta Publisher 16 Quantum Mechanics - 1T



Problem: 2.6- Use the WKB approximation to calculate the energy levels of a spinless

particles of mass m moving in one-dimensional box with walls at x = 0 and x = L.

This potential has two rigid walls. One at x = 0 and the other at x = L. To find the
energy levels, we make use of the quantization rule. Since the momentum is constant
within the well p(E,z) = vV2mE, we can easily infer the WKB energy expression of

the particle within the well. The integral is quite simple to calculate

L

L
/pdx:v2mE/dx:Lv2mE
0

0

L
Now since [ pdz = nmh we obtain,
0

L\/2mEWVEB = nrh

hence

2h?
EWKB _ 2
" omL?
This is the exact value of the energy of a particle in an infinite well.
Problem: 2.7- Use the WKB approximation to calculate the energy levels of the s

states of an electron that is bound to Ze nucleus.

The electron moves in the Coulomb field of the Ze nucleus: V(r) = —Ze?/r. Since
the electron is bound to the nucleus, it can be viewed as moving between two rigid
walls 0 < r < a with E =V(a), a = —Z¢e?/E; the energy of the electron is negative ,
E <0.

The energy levels of the s states (i.e. [ = 0) can thus be obtained from the equation

below,

2

/p(x)d:z;:nwh, n=123,---

z1

Quanta Publisher 17 Quantum Mechanics - 1T



CHAPTER 2. APPROXIMATION METHODS

K 2
/\/2m <E+Z—€>dr—n7rh
T
0

Using the change of variable x = a/r, we have

a a 1
Ze2 1
/\/Qm (E—l——€)dr:\/—2mE/,/2—1dr:a\/_2mE/1/__1dx
T T X
0 0 0

In deriving this relation, we have used the integral fol \/1/x — 1dx = 7/2; this can be

easily obtained by the application of the residue theorem.

5o mZ2e* 1 EEACEE!
"] 2h2 n2 2a, n?
where, a, = h?/(me?) is the Bohr radius. This is the correct (Bohr) expression for the

energy

Quanta Publisher 18 Quantum Mechanics - 1T



Chapter 3

Time Dependent Perturbation

Theory

SOLVED PROBLEMS

Problem: 3.1- A system in an unperturbed state n is suddenly subjected to a constant
perturbation H' (r) which exists during time 0 — ¢. Find the probability for transition
from state n to state k and show that it varies simple harmonically with angular

(Ek_E'n) 3 4|I{lkn|2
frequency =%~ and amplitude BB

2h

We know that

t 2

1 .
P =\ [ <Vl > eotae) vie) =BG
0

2

t
So, Pé}? = % [ H'y, (1) exp (iwgnt’) dt” . When the perturbation is constant in time,
0

H'y, (r) can be taken outside the integral. Hence,



CHAPTER 3. TIME DEPENDENT PERTURBATION THEORY

t 2

H/
P.i(t) = ];Lh(r)/exp (iwpnt’) dt’
0

H'y 2
= _hwzn lexp (iwgnt) — 1]

. . t .
.. LWt Whn 5 W
e knlt — e knyg . e kn

exp (iwpkn'/2) [exp (—iwkn'/2) — exp (iwkn'/2)]

o H/k:n

hwkn
| 2iHY,
B hwkn
4 | H |

Row? s (/o)

2
e — e = 92isin 6

exp (z’w;mt/g) sin (wknt/z)

Which is the probability for transition from state n to state k. From the above ex-

pression it is obvious that the probability varies simple harmonically with angular

Wkn (Ek_E'fl) 3 3 4 . 4|Hlkn|2 - 4‘Hlkn|2
frequency =& = == The amplitude of vibration is Pk BB

Problem: 3.2- Spontaneous emission exceeds stimulated emission in the visible region,

whereas reverse the situation in the microwave region.

Visible region Wavelength ~ 5000A°. So, Rate of spontaneous emission / Rate of
stimulated emission = e#F — 1.

hv A\ he
kKT M\kT

B (6.63 x 107*4Js) (3 x 10%ms™1)
(5000 x 107%m) (1.38 x 10~ JK 1) 300K

= 96.03

The rate of spontaneous emission = (€?%% — 1) x rate of stimulated emission

= 4.073x rate of stimulated emission

Microwave region: Wavelength = 1cm. Therefore,

hv he

KT — NT
(6.63 x 107%"Js) (3 x 10%ms™)

= 0.004
(0.01m) (1.38 x 10" JK 1) 300K

Quanta Publisher 20 Quantum Mechanics - 1T



0-004 _ 1) x rate of stimulated emission

The rate of spontaneous emission = (e
= 0.004 x rate of stimulated emission.
Problem: 3.3- Prove the following:
I: If the source temperature is 1000K, in the optical region ()\ = 500()121)7 the emission
is predominantly due to spontaneous transitions.
IT: If the source temperature is 300K, in the microwave region (A = lem), the emission
is predominantly due to stimulated transitions. The Boltzmann constant is 1.38 x

1073 JKL

Spontaneous emission rate/Stimulated emission rate = exp (Z—i’;) -1
I: In the optical region (A = 5000 x 10'%m), T'= 1000K

c 3 x 108
= e o — G 10
YT T s00x100 N
hv  6.63x107% x 6 x 10" il
KT 138 x 107 x 1000
exp (28.8) — 1 = 3.22 x 102
Thus, the spontaneous emission is predominant.
I1. In the microwave region (A = 0.01m), 7" = 300K
1 8
p2 01239 Lasagwn;
A 10
hv _ 6.63 x 107 x 3 x 101 48 % 10-3

KT~ 1.38x 1072 x 300
exp (4.8 X 107%) — 1 = 0.0048.

Therefore, the stimulated emission is predominant.

Quanta Publisher 21 Quantum Mechanics - 1T



CHAPTER 3. TIME DEPENDENT PERTURBATION THEORY

Problem: 3.4- The time varying Hamiltonian H’ (¢) induces transitions between states
|7) and |k). Using time-dependent perturbation theory, show that the probability for
a transition from state |j) to state |k) is the same as the probability for a transition

from state |k) to state |j).

The probability for transition from state |j) to state |k) at time t is Pj; (¢) The relation

is

1

Py (t) = 7 (k|H'| §) exp (iwg;t") dt’
1
0
So the equation becomes
2
]' /
P (t) = |—= ") exp (iwp;t") dt
ih
0

The probability for transition from state |k) to state |j) at time ¢ is given by

} 2
1 , .
Py () = | [ G exp Gt
0
Since H' is Hermitian, (k |H'| j) = (j |H'| k). Also, it follows that wy; = @ = —Wjk.

As the integrant of the second integral is the complex conjugate of that of the first

one, we have

Py (1) = P (1)

Problem: 3.5- A quantum mechanical system is initially in the ground state |0). A
t=0, a perturbation of the form H' (t) = H,e™*, where « is a constant, is applied. Show

2
that the probability that the system is in state |1) after long time is Py = %,

10

E\—Ey
R

In the first order perturbation, the transition probability is given by equation,

w10 =

Quanta Publisher 22 Quantum Mechanics - 1T



2

1 .
P01 (t) = E / Hll()(t) exXp (zwmt') dt,

where,
By — F
H'yo(t) = (1|H'(#)]|0) and wyy = %
Substituting the value of H'(t) and allowing t — oo, we get
- 2
1
Py (t) = g /exp (iwiot) e~ (1 |H,| 0) dt
- 2
1
= %/exp iw —a)t(1|H,|0)dt
0
(1|Ho|0) |exp [~ (o — o) t]| ]
Poi (t) = . .
ih — (o —iwi) |,
2

_ ’(1|HO|O) 1

1h o — iwlo

The probability for a transmission from state |0 > to a state |1 > after a long time is

TAEAR
R2(a? + W)

- H, is Hermiteian

So
(1[Ho|0) = (0]Ho| 1)
and
(o — iwyo)? = (@ — iwrg) (v + iwyo)
= o’ +iwg,
Quanta Publisher 23 Quantum Mechanics - 1T



Chapter 4

Scattering Theory

SOLVED PROBLEMS

Problem: 4.1- A beam of particles is incident normally on a thin metal foil of thickness
t. if N,is the number of nuclei per unit volume of the foil, show that the fraction of
incident particles scattered in the direction (6, ¢)is D(6)Notdf2, where df2 is the small
solid angle in the direction (6, ¢).

We know that, the differential scattering cross-section is

dN/d_Q
Do) = —

Where dN is the number scattered into solid angle df? in the direction (6, ¢) per unit

time and .J;,is the incident flux. Hence,
dN = D(0)J;,d$2

This is the number scattered per unit time by a single nucleus. The number of nuclei
in a volume At = N,At. The number scattered by N, At nuclei = D(0)J;,d2N,At.
Thus, Number of particles striking an area A per second = J;, A. Fraction scattered
in the direction (6, ¢) is



D(6)J;,,d2N, At
T A
—D(0)N.td2 = N,tdo

Problem: 4.2- In the theory of scattering by a fixed potential, the asymptotic form of

the wave function is

7—00 r

ikr

Y — A {eikwf(e) ‘ }

Obtain the formula for scattering cross-section in terms of the scattering amplitude
f(0).

The probability current density J (r,t) is given by

h
J(1,8) = 2= (WYY — 4" V)

If J (r,t) is calculated with the given wave function, we get interference terms between
the incident and scattered wave. In the experimental arrangements, these do not ap-
pear. Hence we calculate the incident and scattered probability current densities J;,

and J,. separately. The value of J;, due to Ae?**is

Zh 2 B 2 .
T = (1A (=ik) — |A]? (%))
_THAP

m

Jin

etkr

The scattered probability current density due to Af(9)

Joo = |APIF O | -5 — = — = + =
APl (0) |- -
Bk, , 1
Joo =—|AP|F (O)* =
AP (0)

The differential scattering cross-section D (6).
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CHAPTER 4. SCATTERING THEORY

Jse dA
O =705
_ () 4P O - & - r%ag2
B AP
D(9)=If O

Problem: 4.3- Using Born approximation, calculate the differential and total cross-
sections for scattering of a particle of mass mby the j—function potential V (r) =

g6 () , g =constant.

The scattering amplitude

F(0) = — 2:;2 / exp (iq.r') V (') &’

Where ¢ = k — k'and ¢ = 2k sin g. Here, kand k’are respectively, the wave vectors of

the incident and scattered waves. Substituting the value of V (r), we get

mg

1) = =50 / exp (iq') 6 (r') 7' - é(n) = [1 for =0

0 other wise

Using the definition of d—function, we get

The differential scattering cross-section is

m2g?
At

D) =1f©)

Since the distribution is isotropic, the total cross-section is given by
m2g?

o=4rD(0) = =
m
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Problem: 4.4- Write the asymptotic form of the wave function in the case of scattering

by a fixed potential and explain. Also, what is Born approximation?

The general asymptotic solution is

ikr

Y — A [ek +1(0)° ] (4.1)

r—00 T

Where A is a constant. In this, the part e?**represents the incident plane wave along

the z—axis. The wave vector k is given by

2mE
2 _
k* = R

Where E is the energy. The second term of equation (i) represents the spherically
diverging scattered wave. The amplitude factor f () is called the scattering amplitude.
If the potential V(77) is weak enough, it will distort only slightly the incident plane
wave.

Problem: 4.5- What is the formula for the first Born approximation for scattering

amplitude f (0)? Under what condition is the Born approximation valid?

In the first Born approximation, the scattering amplitude

2m o ’

f(0) = “72 ), sin(qr )V (r )r'dr'
Where ¢h is the momentum transfer from the incident particle to the scattering po-

tential and

0
= 2|k|sin—
al = 2lksing

With angle 6 being the scattering angle, V' (r)the potential, and m the mass. More-
over, the Born approximation is valid for weak scattering potentials and large incident

energies.
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Chapter 5

Relativistic Quantum Mechanics

SOLVED PROBLEMS

Problem: 5.1- Write Dirac’s equation for a free particle. Find the probability density

and the probability current density in Dirac’s formalism.

Dirac’s equation for a free particle is

ih%@(r, t) = —icha. V¥ + Bm.c*¥ (5.1)

Here, a and (8 are 4 x 4 matrices and ¥ (r,t) is a four-column vector. The Hermitian

conjugate of above equation is

ih%@* (r,t) = +icha.V¥* + Bm,c*w* (5.2)

Multiplying Eq(5.1) by ¥T on left, Eq(5.2) by ¥ on right, and subtracting one from
the other, we get

1
i <Wa_w — aiw) = —ich (V1a.V¥ + VU .a)
0 t T
a(lp lI/) + V. (c@ OAP) =0

%pr(r, t)+V.J(r,t)=0 (5.3)



Where,

o (rt)=cltaW  : p.(rt)=vlw
Eq(5.3) is the continuity equation and the equation p, (r,t) and J,. (r,t) are the prob-
ability density and probability current density, respectively.

Problem: 5.2- For a Dirac particle moving in a central potential, show that the orbital

angular momentum is not a constant of motion.

In the Heisenberg picture, the time rate of change of the L = r x P is given by

dL
h— = [L, H
¢ dt [ Y ]
Its x-component is
_d ,
Zhalm =[L,, H] = [yp. — zpy, ca.P + Bm,c’]

:[ypz7 CQ.P] + [ypza /BmoCQ] _J [Zpyv CCE.P] g [Zpgpﬁmocg]

Since a and 8 commute with r and p,

. d
ZHELQJ — [ypza Cay-py] - [Zpya COéZpZ]

ih%[/x =cay, [y, pyl p» — co [z, 9] Dy ly, P)] =ih; [Py, P)] =0
=cayihp, — caihp,
=cil(p.c, — pya.) # 0

Which shows that L,is not a constant of motion. Similar relations hold good for L,and

L, components. Hence the orbital angular momentum L is not a constant of motion.
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CHAPTER 5. RELATIVISTIC QUANTUM MECHANICS

Problem: 5.3- If one wants to write the relativistic energy F of a free particle as

2

E
== (a.P + ﬁmgc)Q,

Show that /s and ’s have to be matrices and establish that they are non-singular

and Hermitian.

The relativistic energy (E) of a free particle is given by
E? = 2P? 4+ m2ct = & (P2 + micQ)

When E?/c? is written as given in the problem,

= (a.P)? + (Bmec)?® + a.PBmyc + Bmyca.P

(a+b+e=d*+ b+ A+ab+
ba + bc 4 ¢b + ca + ac

+ B2m2c* + (apay, + o) papy + (e, + azau) pap.

2,2 2,2 2,2
=0 Py + CYypy + a,D,

+ (ayo, + a,ay) pyps + (a2 + Bag) mecp,
+ (O‘yﬁ + 50@) MeCPy + (0526 + Baz) meCp,

For this equation to be valid, it is necessary that

2=a=a=p3=1{a,a,}=0{a,a}=0

{a27am} =0, {awaﬁ} =0, {a?ﬁﬁ} = 0,{&2,5} =0

It is obvious that the o/s and 's can not be ordinary numbers. The anti-commuting
nature of the o/s and ('s suggests that they have to be matrices. Since the square of
these matrices are unit matrices, they are non-singular. As the /s and 's determine

the Hamiltonian, they must be Hermitian.
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Problem: 5.4- show that the given matrix is not a constant of motion.

The equation of motion of ¢’ in the Heisenberg picture is

do’
i =o', H
? dt [U ) ]

/

Hence for o’ to be a constant of motion, o', ', and o', should commute with the

Hamiltonian. Thus,
. do’ ’ / 2
zh% =lo'y, H] = [aw ,ca.P + Bmygc ]

=[0% ca+ Pl {07, fmoc’]

Since o/, commutes with f3,

d /
Zhd_ol; C [lea Caxpx} + [0-/1‘7 C&ley] + [0-,1” CO'/ZpZ]
Since,
[OJQM Oéx] = O’ [U,xv ay} = QiOZZ, [OJQ@? Oéz] = —2iOéy
. dal / ;
ZFL% = [0‘ 9 H] = QZC(OZzpy - aypz) 7é 0

Hence the result.
Problem: 5.5- Show that Dirac’s Hamiltonian for a free particle commutes with the
operator o.P, where P is the momentum operator and ¢ is the Pauli spin operator in

the space of four component spinors.

Dirac’s Hamiltonian for a free particle is

H = c¢(a.P) + Bm,c?
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CHAPTER 5. RELATIVISTIC QUANTUM MECHANICS

where,
0 o I 0
o= ; /8 _—
o 0 0 -1
0 o 0 o.P
a.P = P=
o 0 oP 0
o.P 0
o.P =
0 o.P

[0.P, H] = [0.P,ca.P + m,c?| = [0-P, ca-Pl+[o-P, fm,|c* = c[0.P, o - P|+[0.P, B] moc®

o.P 0 0 o.P o.P 0 I 0

2
= C y + mocC }

0 o.P o.P 0 0 o.P 0 -1
=04+0=0

Hence the result.
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Chapter 6

Application to Quantum Mechanics

SOLVED PROBLEMS

Problem: 6.1- A sample of certain element is placed in a 0.300 T magnetic field and
suitably excited. How far apart are the Zeeman components of 450 nm spectral line of

this element 7

The separation of the Zeeman component is

it o eB
4mm
Since, v = ¢/\,dv = —cd)\/)N?, and so, disregarding the minus sign,
2 2
A — A Av _ eB\
c 4mme

1.60 x 10719 x 0.300 x (4.50 x 1077)?
= =283 x 1072 m = 0.00283
47911 x 109 x 3.00 x 108 e "

Problem: 6.2- Compute the change in wavelength of the 2p — 1s photon when a
hydrogen atom is placed in a magnetic field of 2.007.

The energy of the photon from n =2ton =1is £ = —13.6eV (2% — %2) = 10.2eV,
and its wavelength is A = he/E = (1240eV.nm)/(10.2eV) = 122nm. The energy



CHAPTER 6. APPLICATION TO QUANTUM MECHANICS

change AFE of the levels is

AE = ugB =(9.27 x 1072*J/T)(2.007)
=185 x 1072'J = 11.6 x 10~%eV

We know that

)\2
AN =—AF
he

(122nm)? 5
=———* 11. 1
1240eV.nm 6> 107"V

=0.00139nm

Even for fairly large magnetic field of 27", the change on wavelength is very small, but
it is easily measureable using an optical spectrometer.

Problem: 6.3- A collection of hydrogen atoms is placed in a magnetic field of 3.507.
Ignoring the effects of electron spin, find the wavelengths of the three normal Zeeman

components of the 3d to 2p transition.

In the absence of a magnetic field, the 3d to 2p energy difference is

1 1
E = (—13.6057¢V) (3—2 — 2—2) = 1.8896&8eV
and the wavelength is
he
A =—
FE
B 1239.842e N.nm
~ 1.88968¢V
=656.112nm

The magnetic field gives a change in wavelength of
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)\2
hc
(656.112nm)>2 )
=130 8430V n 0+ X 107°eV/T)(3.50T)

=0.0703nm

The wavelengths of the three normal Zeeman components are then 656.112nm,
656.112nm + 0.070nm = 656.182nm, and 656.112nm — 0.070nm = 656.042nm.
Problem: 6.4- In anormal Zeeman effect experiment using a magnetic field of a stregth

0.3T, find the splitting between the components of a 660nm spectral line.

Given that

B =0.3T
A =660nm

We know that
B eB)\?

dmme

1.6 x 107" x 0.3 x (660 x 1079)?
4 x314x9.1x1073 x 108

=6.08 x 107 ?m = 6pm

AN

Problem: 6.5- Calculate the wavelengths of the components of the first line of the

Lyman series, taking the fine structure of the 2p level into account.

The energy of the 2p to 1s Lyman transition is

1

1
E = (—13.6057¢V) (ﬁ - ﬁ) = 10.20428¢V

and its wavelength (in the absence of fine structure) is
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_he

E
~ 1239.842eN.nm

10.20428eV
=121.5022nm

A

With the fine structure energy splitting of 4.5 x 10~°eV, the wavelength splitting is

/\2
AN =—AF
he

(121.5nm)? 5
2L Onm)T e 105y
12206V o (10 X 107V

=0.00054nm

The fine structure splits one level up by 0.5AF and the other down by the same

amount, so the wavelengths are
1
A+ §AA = 121.5024nm
and

1
A— §A/\ = 121.5019nm
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