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Chapter 1

Identical Particles

SOLVED PROBLEMS

Problem 1.1- Consider a one-dimensional infinite square well of width 1cm with free

electrons in it. If its Fermi energy is 2eV, what is the number of electrons inside the

well?

Solution

En =
n2π2ℏ2

2ma2

where, n = 1, 2, 3, . . . shows energy levels. Each level accommodate two electrons, one

spin up and the other spin down. If the highest filled level is n, then the Fermi energy,

EF = En.

n2 =
2ma2EF

π2ℏ2

n2 =

(
2× 1.6× 10−19J

)
× 2×

(
9.1× 10−31Kg

)
(0.01m)2

(3.14)2
(
1.05× 10−34Js

)2
n2 = 5.3475× 1014 −→ n = 2.31× 107

The number of electrons (n) inside the well = 4.62× 107.



Problem 1.2- N non-interacting bosons are in an infinite potential well defined by

V (x) = 0 for 0 < x < a; V (x) = ∞ for x < 0 and for x > a. Find the ground

state energy of the system. What would be the ground state energy if the particles are

fermions?

Solution

The energy eigenvalue of a particle in the infinite square well is given by

En =
n2π2ℏ2

2ma2

As the particles are bosons, all the N-particles will be in the n = 1 state. Hence the

total energy of system

E ′
n1,n2,n3...nN

=
π2ℏ2

2ma2
(12 + 12 + 12 . . . 12)

E =
Nπ2ℏ2

2ma2

If the particles are fermions, a state can have only two of them, one spin up and the

other spin down. Therefore, the lowest N
2
states will be filled. The total ground state

energy will be

2ε1 + 2ε2 + 2ε3 + . . .+ 2εN
2
= E1 =

π2ℏ2

2ma2

[
(12 + 12) + (22 + 22) + . . .

]
∵ 12 + 22 + . . . n2 =

1

6
n(n+ 1)(2n+ 1) =

2π2h2

2ma2

[
12 + 22 + . . .+

(
N

2

)2
]

E◦ =
N3π2ℏ2

24ma2

Problem 1.3- Sixteen non-interacting electrons are confined in a potential V (x) = ∞
for x < 0 and x > a; V (x) = 0, for 0 < x < a. (i) What is the energy of the least

energetic electron in the ground state? (ii) What is the energy of the most energetic

electron? (iii) What is the Fermi energy EF of the system?

Solution

(i) The least energetic electron in the ground state is given by
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CHAPTER 1. IDENTICAL PARTICLES

E1 =
π2ℏ2

2ma2

(ii) In the given potential, the energy eigenvalue is

En =
n2π2ℏ2

2ma2

As two electrons can go into each of the states n = 1, 2, 3, . . . the highest filled level

will have n = 8 and its energy will be

E8 =
82π2ℏ2

2ma2

(iii) The energy of the highest filled state is the Fermi energy EF . Hence,

Ef =
n2π2ℏ2

2ma2

Ef =
64π2ℏ2

2ma2
=

32π2ℏ2

ma2

Each state has 2 electrons

Ef =
64π2ℏ2

ma2

Problem 1.4- Prove that it is impossible to construct a completely anti-symmetric spin

function for three electrons. (Concept: Because electrons has only two spin orienta-

tions)

Solution

Let a, b, c stands for three functions and 1,2,3 for three identical particles. In the

function a (1) b (2) c (3), particle 1 is in a, particle 2 is in b, and particle 3 is in c.

Let us proceed without specifying that these functions correspond to space or spin

functions. The third-order slater determinant for the case is

=
1√
6

∣∣∣∣∣∣∣∣∣∣∣
a (1) a (2) a (3)

b (1) b (2) b (3)

c (1) c (2) c (3)

∣∣∣∣∣∣∣∣∣∣∣
Quanta Publisher 4 Quantum Mechanics - II



This is completely anti-symmetrized as interchange of two spins amount to interchang-

ing two columns of the determinant, which multiplies it by -1. Let us now specify the

functions a, b, c as that due to electron spins. Let a = α, b = β, c = β in the above

determinant. The determinant reduces to

=
1√
6

∣∣∣∣∣∣∣∣∣∣∣
α (1) α (2) α (3)

β (1) β (2) β (3)

β (1) β (2) β (3)

∣∣∣∣∣∣∣∣∣∣∣
As the second and third rows of the determinant are identical, its value is zero. In

whatever way we select a, b, c, the two rows of the determinant will be equal. Therefore,

we can not construct a completely anti-symmetric three-electron spin function.

Problem 1.5- The valence electron in the first excited state of an atom has the electronic

configuration 3s1, 3p1. (i) Under L-S coupling what value of L and S are possible? ii

Write the spatial part of their wave-functions using the single particle functions ψs (r)

and ψp (r).

Solution

i Electronic configuration 3s1, 3p1. Hence l1 = 0, l2 = 1 ; s1 =
(
1
2

)
, s2 =

(
1
2

)
; L =

1, S = 0, 1 ii Taking exchange degeneracy into account, the two possible space

functions are

ψs (r1)ψp (r2) and ψs (r2)ψp (r1)

The symmetric combination

ψs =
1√
2!

[ψs (r1)ψp (r2) + ψs (r2)ψp (r1)]

Anti-symmetric combination

ψas =
1√
2!

[ψs (r1)ψp (r2)− ψs (r2)ψp (r1)]

where Ns and Nas are normalization constants.

Quanta Publisher 5 Quantum Mechanics - II



CHAPTER 1. IDENTICAL PARTICLES

Problem 1.6- Specify the symmetry of the following functions

(a)- ψ(x1, x2) = 4(x1 − x2)
2 + 10

x2
1+x2

2

(b)- ϕ(x1, x2) = − 3(x1−x2)
2(x1−x2)2+7

(c)- χ(x1, x2, x3) = 6x1x2x3 +
x2
1+x2

2+x2
3−1

2x3
1+2X3

2+2X3
3+5

Solution

(a)- The function ψ(x1, x2) is symmetric, since ψ(x2, x1) = ψ(x1, x2)

(b)- The function ϕ(x1, x2) is antisymmetric, since ϕ(x2, x1) = −ϕ(x1, x2), and ϕ is

zero

(c)- The function χ(x1, x2, x3) is symmetric because

χ(x1, x2, x3) = χ(x1, x3, x2) = χ(x2, x1, x3) = χ(x2, x3, x1)

= χ(x3, x1, x2) = χ(x3, x2, x1)

Problem 1.7- Suppose we have two noninteracting particles, both of mass m in infinite

square well. The one particle states are:

ψn(x) =

√
2

L
sin

(nπ
L
x
)
, En = n2

(
π2ℏ2

2mL2

)
= n2K

Write wave functions:

• If particles are distinguishable.

• If particles are identical bosons.

• If particles are identical fermions.

Solution

If particles are distinguishable, composite wave functions are,

ψn1n2(x) = ψn1(x)ψn2(x), En1n2 = (n2
1 + n2

2)k

For example the ground state is,

ψ11(x) =
2

L
sin

(πx1
L

)
sin

(πx2
L

)
, E11 = 2K

The first excited state is doubly degenerate;
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ψ12(x) =
2

L
sin

(πx1
L

)
sin

(
2πx2
L

)
, E12 = 5K

ψ21(x) =
2

L
sin

(
2πx1
L

)
sin

(πx2
L

)
, E21 = 5K & so on.

If particles are identical bosons, the ground state is unchanged but 1st excited state is

non-degenerate;

√
2

L

{
sin

(πx1
L

)
sin

(
2πx2
L

)
+ sin

(
2πx1
L

)
sin

(πx2
L

)}
with energy 5K

If particles are identical fermions, the ground state is:

√
2

L

{
sin

(πx1
L

)
sin

(
2πx2
L

)
− sin

(
2πx1
L

)
sin

(πx2
L

)}
with energy 5K

Problem 1.8- Find the ground state energy and wave function of a system of N nonin-

teracting identical particles that are confined to a one-dimensional, infinite well when

the particles are (a) bosons and (b) spin 1
2
fermions.

Solution

In the case of a particle moving in an infinite well, its energy and wave function are

εn = n2ℏ2π2/(2ma2) and ψn(xi) =
√

2/a sin(nπxi/2)

(a)- In the case where the N particles are bosons, the ground state is obtained by

pitting all the particles in the state n = 1, the energy and wave function are then

given by

E(0) = ε1 + ε1 + ε1 + · · ·+ ε1 = N + ε1 =
Nℏ2π2

2ma2

ψ0(x1, x2 · · · , xN) =
N∏

n=1

√
2

a
sin

(π
2
xi

)
=

√
2N

aN
sin

(π
2
x1

)
sin

(π
2
x2
)
· · · sin

(π
2
xN

)
(b)- In the case where the N particles are spin 1

2
fermions, each level can be occupied

by at most two particles having different spin states
∣∣1
2
,±1

2

〉
. The ground state is thus

obtained by distributing the N particles among the N/2 lowest levels at a rate of two

particles per level:
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CHAPTER 1. IDENTICAL PARTICLES

E0 = 2 + ε1 + 2 + ε2 + 2 + ε3 + · · ·+ 2 + εN/2 = 2

N/2∑
n=1

n2ℏ2π2

2ma2
=

ℏ2π2

ma2

N/2∑
n=1

n2.

If N is large we may calculate
N/2∑
n=1

n2 by using the approximation

N/2∑
n=1

n2 ≃
N/2∫
1

n2dn ≃ 1

3

(
N

2

)3

hence the ground state will be given by

E0 ≃ N2 ℏ2π2

24ma2

The average energy per particle is E0/N ≃ N2ℏ2π2/(24ma2). In the case where N is

even, a possible configuration of the ground state wave function ψ0(x1, x2, · · · , xN) is
given as follows

1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1)χ(S1) ψ1(x2)χ(S2) . . . ψ1(xN)χ(SN)

ψ1(x1)χ(S1) ψ1(x2)χ(S2) . . . ψ1(xN)χ(SN)

ψ2(x1)χ(S1) ψ2(x2)χ(S2) . . . ψ2(xN)χ(SN)

ψ2(x1)χ(S1) ψ2(x2)χ(S2) . . . ψ2(xN)χ(SN)

ψ3(x1)χ(S1) ψ3(x2)χ(S2) . . . ψ3(xN)χ(SN)

ψ3(x1)χ(S1) ψ3(x2)χ(S2) . . . ψ3(xN)χ(SN)

...
...

. . .
...

ψN/2(x1)χ(S1) ψN/2(x2)χ(S2) . . . ψN/2(xN)χ(SN)

ψN/2(x1)χ(S1) ψN/2(x2)χ(S2) . . . ψN/2(xN)χ(SN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where χ(Si) =

∣∣1
2
,±1

2

〉
is the spin state of the ith particle, with i = 1, 2, 3, · · · , N . If

N is odd then we need to remove the last row of the determinant.
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Problem 1.9- An electron is in spin state

χ = A

3i

4


Normalize this state. Evaluate expectation values of Sx, Sy, Sz

Solution

To normalize the state, we apply normalization condition.

χ†χ = 1

⇒ A A

(
−3i 4

)3i

4

 = 1

⇒
∣∣A∣∣2(9 + 16) = 1 ⇒

∣∣A∣∣225 = 1 ⇒ A =
1

5

Expectation values of Sx, Sy, Sz are

⟨Sx⟩ = χ†Sxχ =
1

5

(
−3i 4

)
ℏ
2

0 1

1 0

 1

5

3i

4

 = 0

⟨Sy⟩ = χ†Syχ =
1

5

(
−3i 4

)
ℏ
2

0 −i

i 0

 1

5

3i

4

 = −12

25
ℏ

⟨Sz⟩ = χ†Szχ =
1

5

(
−3i 4

)
ℏ
2

1 0

0 −1

 1

5

3i

4

 = − 7

50
ℏ

Quanta Publisher 9 Quantum Mechanics - II



CHAPTER 1. IDENTICAL PARTICLES

Problem 1.10- An electron is in spin state

χ =

1

2


Evaluate expectation values of Sx, Sy, Sz

Solution

Expectation values of Sx, Sy, Sz are

⟨Sx⟩ = χ†Sxχ =

(
1 2

)
ℏ
2

0 1

1 0


1

2

 = 2ℏ

⟨Sy⟩ = χ†Syχ =

(
1 2

)
ℏ
2

0 −i

i 0


1

2

 = 0

⟨Sz⟩ = χ†Szχ =

(
1 2

)
ℏ
2

1 0

0 −1


1

2

 = −3

2
ℏ as required

⟨S2⟩ = χ†S2χ =

(
1 2

)
3ℏ2

4

1 0

0 1


1

2

 =
15

4
ℏ as bonus

Problem 1.11- Find the normalized wave function of a system of three identical bosons,

which are given in one particle.

Solution

Let ψ1, ψ2, ψ3 be normalized one particle states.

• If all three occupied states are different, then state function of system will be;

ψ =
1√
3!

{ψ1(1)ψ2(2)ψ3(3) + ψ1(1)ψ2(3)ψ3(2) + ψ1(3)ψ2(2)ψ3(1) + ψ1(3)ψ2(1)ψ3(2)

+ψ1(2)ψ2(1)ψ3(3) + ψ1(2)ψ2(3)ψ3(1)}

Quanta Publisher 10 Quantum Mechanics - II



• If two of three filled states are identical e.g. ψ1(1) ̸= ψ2(2) = ψ2(3), then state

function of system will be;

ψ =

√
2!

3!
{ψ1(1)ψ2(2)ψ3(2) + ψ1(2)ψ2(1)ψ3(2) + ψ1(2)ψ2(2)ψ3(1)}

• If three are in same, then state function of system will be;

ψ = ψ1(1)ψ2(1)ψ3(1)

Quanta Publisher 11 Quantum Mechanics - II



Chapter 2

Approximation Methods

SOLVED PROBLEMS

Problem: 2.1- A trial function ϕ differs from an eigen-function ψE so that ϕ = ψE+αϕ1,

where ψE and ϕ1 are orthonormal and α << 1. Show that ⟨H⟩ differs from E only by

a term of order α2 and find this term. Given that HψE = EψE

Solution

⟨H⟩ = ⟨ϕ |H |ϕ ⟩
⟨ϕ |ϕ⟩

=
⟨(ψE + αϕ1) |H| (ψE + αϕ1)⟩
⟨(ψE + αϕ1) |(ψE + αϕ1)⟩

⟨H⟩ = ⟨ψE |H|ψE⟩+ α ⟨ψE |H|ϕ1⟩+ α ⟨ϕ1 |H|ψE⟩+ α2 ⟨ϕ1 |H|ϕ1⟩
⟨ψE |ψE ⟩+ α ⟨ψE |ϕ1 ⟩+ α ⟨ϕ1 |ψE ⟩+ α2 ⟨ϕ1 |ϕ1 ⟩

Since H is Hermitian,

⟨ψE |H|ϕ1⟩ = E ⟨ψE |ϕ1 ⟩ = 0

⟨H⟩ = E + α2 ⟨ϕ1 |H|ϕ1⟩
1 + α2

= E + α2 ⟨ϕ1 |H|ϕ1⟩

As 1 + α2 ∼= 1. Hence the result ⟨H⟩ differs from E by the term α2 ⟨ϕ1 |H|ϕ1⟩.



Problem: 2.2- The unperturbed wave-functions for harmonic oscillator is

ψ◦
n(x) =

(mω
ℏπ

)1/4

− exp
(mωx2

2ℏ

)
If a small perturbation

V ′ =

 λx, x > 0

0, x ≤ 0

acts on the system, evaluate the first order correction to the ground state energy.

Solution

The givenH◦ is the one dimensional simple harmonic oscillator. Hence the unperturbed

ground state energy is

ψ◦
n (x) =

(mω
ℏπ

) 1
4
exp

(
mωx2

2ℏ

)
The first order correction to the energy is

E(1)
n = ⟨ψ◦ (x) |λx|ψ◦ (x)⟩

=
(mω
ℏπ

) 1
2
λ

∞∫
0

x. exp

(
−mωx

2

ℏ

)
dx

E(1)
n =

(mω
ℏπ

) 1
2
λ

(
ℏ

2mω

)
=

λ

2

√
ℏ

πmω
.

Problem: 2.3- Solve the following one-dimensional infinite potential well, which is

modified at the bottom by a perturbation Vp(x)

V (x) =

 0, for0 < x < a;

∞, elsewhere;
, VP (x) =

 V◦, 0 ≤ x ≤ a
2

0, eleswhere

Calculate the energy En. Using the WKB method and compare it with where the

V◦ << 1, the exact solution.

Solution

V (x) = 0 for 0 < x < a and V (x) = ∞ elsewhere. The turning points are x1 = 0

and x2 = a. The energy within the WKB approximation can be obtained using the

Quanta Publisher 13 Quantum Mechanics - II



CHAPTER 2. APPROXIMATION METHODS

quantization condition

a∫
0

P (En, x)dx =nπℏ ∵ n = 1, 2, 3, · · ·

a/2∫
0

√
2m(En − V◦)dx+

a∫
a/2

√
2mEndx =nπℏ

a

2

√
2m

(√
En − V◦ +

√
En

)
=nπℏ

squaring on both side,

2
√
En(En − V◦) = an − 2En + V◦ ∵ an

2n2π2ℏ2

ma2

again squaring on both side

4E2
n − 4EnV◦ = a2n + 4E2

n + V 2
◦ − 4anEn + 2anV◦ − 4EnV◦

En =
an
4

+
V◦
2

+
V 2
◦

4an

As V◦ is small so neglect V 2
◦ /4an. The exact solution gives

En =
n2π2ℏ2

2ma2
, n = 1, 2, 3, ....

The WKB solution has
(
n+ 1

2

)
in place of n. Another major difference is the allowed

values of n.

EWKB
n =

π2ℏ2

2ma2
n2 +

V◦
2

Problem: 2.4- Use the WKB method to calculate the transmission coefficient of a

particle of mass m and energy E moving in the potential barrier

V (x) =

 V◦ − ax, x > 0

0, x < 0

Solution

As the transmission coefficient is,

Quanta Publisher 14 Quantum Mechanics - II



T = exp−2γ ∵ γ =
1

ℏ

x2∫
x1

√
2m(V (x)− E)dx (2.1)

where the turning point x1 = 0. To get the other turning point, it is necessary that

E = V (x) =V◦ − ax2

x2 =
V◦ − E

a

so, we get

γ =
1

ℏ

V◦−E
a∫

0

√
2m(V (x)− E)dx

=

√
2m

ℏ

∣∣∣∣(V◦ − ax− E)3/2

−3
2
a

∣∣∣∣
V◦−E

a

0

=
−2

√
2m

3aℏ

[(
V◦ − a

(V◦ − E

a

)
− E

)3/2

−
(
V◦ − E

)3/2
]

γ =
−2

√
2m

3aℏ

[(
0
)3/2

−
(
V◦ − E

)3/2
]

=
2
√
2m

3aℏ

(
V◦ − E

)3/2

Put in Eq.(2.1)

T = exp

[
−4

√
2m

3ℏa
(V◦ − E)

3
2

]
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CHAPTER 2. APPROXIMATION METHODS

Problem: 2.5- A particle of mass m moves in an infinite one-dimensional box of length

2a with a potential dip as defined by

V (x) =


∞, a < x < −a

−V◦,−a < x < −a
3

0,−a
3
< x < a

Find the energy of the ground state corrected to first order.

Solution

The unperturbed part of the Hamiltonian is that due to a particle in an infinite po-

tential defined by V (x) for −a < x < a and V (x) = ∞ otherwise. The unperturbed

ground state energy and eigen-functions are

E1 =
π2ℏ2

8ma2
, ψ1 =

1√
a
cos

πx

2a

The perturbation H ′ = −V◦, −a < x < −a
3
. The first order correction is

E(1) = − V◦
a

−a
3∫

−a

cos2
πx

2a
dx = −V◦

2a

−a
3∫

−a

(
1 + cos

πx

a

)
dx

= − V◦
a

|x|−
a
3

−a − V◦
2a

a

π

∣∣∣sin πx
a

∣∣∣−a
3

−a

= − V◦
3

+
V◦
2π

sin 60◦ = −V◦
3

+
V◦
2π

(0.866) = 0.195V◦

The ground state energy corrected to first order is

E =
π2ℏ2

8ma2
= 0.195V◦
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Problem: 2.6- Use the WKB approximation to calculate the energy levels of a spinless

particles of mass m moving in one-dimensional box with walls at x = 0 and x = L.

Solution

This potential has two rigid walls. One at x = 0 and the other at x = L. To find the

energy levels, we make use of the quantization rule. Since the momentum is constant

within the well p(E, x) =
√
2mE, we can easily infer the WKB energy expression of

the particle within the well. The integral is quite simple to calculate

L∫
0

pdx =
√
2mE

L∫
0

dx = L
√
2mE

Now since
L∫
0

pdx = nπℏ we obtain,

L
√

2mEWKB
n = nπℏ

hence

EWKB
n =

π2ℏ2

2mL2
n2

This is the exact value of the energy of a particle in an infinite well.

Problem: 2.7- Use the WKB approximation to calculate the energy levels of the s

states of an electron that is bound to Ze nucleus.

Solution

The electron moves in the Coulomb field of the Ze nucleus: V (r) = −Ze2/r. Since
the electron is bound to the nucleus, it can be viewed as moving between two rigid

walls 0 ≤ r ≤ a with E = V (a), a = −Ze2/E; the energy of the electron is negative ,

E < 0.

The energy levels of the s states (i.e. l = 0) can thus be obtained from the equation

below,

x2∫
x1

p(x)dx = nπℏ, n = 1, 2, 3, · · ·
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CHAPTER 2. APPROXIMATION METHODS

a∫
0

√
2m

(
E +

Ze2

r

)
dr = nπℏ

Using the change of variable x = a/r, we have

a∫
0

√
2m

(
E +

Ze2

r

)
dr =

√
−2mE

a∫
0

√
a

r
− 1dr = a

√
−2mE

1∫
0

√
1

x
− 1dx

=
π

2
a
√
−2mE = −πZe2

√
− m

2E

In deriving this relation, we have used the integral
∫ 1

0

√
1/x− 1dx = π/2; this can be

easily obtained by the application of the residue theorem.

En = −mZ
2e4

2ℏ2
1

n2
= −Z

2e2

2a◦

1

n2

where, a◦ = ℏ2/(me2) is the Bohr radius. This is the correct (Bohr) expression for the

energy
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Chapter 3

Time Dependent Perturbation

Theory

SOLVED PROBLEMS

Problem: 3.1- A system in an unperturbed state n is suddenly subjected to a constant

perturbation H ′ (r) which exists during time 0 → t. Find the probability for transition

from state n to state k and show that it varies simple harmonically with angular

frequency (Ek−En)
2ℏ and amplitude 4|H′

kn|2

(Ek−En)
2 .

Solution

We know that

P
(t)
nk =

∣∣∣∣∣∣ 1iℏ
t∫

0

< ψk|V (t′)ψn| > eiωknt
′
dt′

∣∣∣∣∣∣
2

∵ V (t′) = H ′(r)

So, P
(t)
nk =

∣∣∣∣ 1
iℏ

t∫
0

H ′
kn (r) exp (iωknt

′) dt′
∣∣∣∣2. When the perturbation is constant in time,

H ′
kn (r) can be taken outside the integral. Hence,
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Pnk(t) =

∣∣∣∣∣∣H
′
kn (r)

iℏ

t∫
0

exp (iωknt
′) dt′

∣∣∣∣∣∣
2

=

∣∣∣∣−H ′
kn

ℏωkn

[exp (iωknt)− 1]

∣∣∣∣2 ∵ eiωknt = eiωkn
t
2 · eiωkn

=

∣∣∣∣−H ′
kn

ℏωkn

exp
(
iωkn

t/2
) [

exp
(
−iωkn

t/2
)
− exp

(
iωkn

t/2
)]∣∣∣∣2

=

∣∣∣∣−2iH ′
kn

ℏωkn

exp
(
iωkn

t/2
)
sin

(
ωkn

t/2
)∣∣∣∣2 ∵ eiθ − e−iθ = 2i sin θ

Pnk(t) =

∣∣∣∣∣ 4

ℏ2
|H ′

kn|2

ω2
kn

sin2
(
ωkn

t/2
)∣∣∣∣∣

2

Which is the probability for transition from state n to state k. From the above ex-

pression it is obvious that the probability varies simple harmonically with angular

frequency ωkn

2
= (Ek−En)

2ℏ . The amplitude of vibration is 4|H′
kn|2

ℏ2ω2
kn

= 4|H′
kn|2

(Ek−En)
2 .

Problem: 3.2- Spontaneous emission exceeds stimulated emission in the visible region,

whereas reverse the situation in the microwave region.

Solution

Visible region Wavelength ≈ 5000A◦. So, Rate of spontaneous emission / Rate of

stimulated emission = e
hυ
kT − 1.

hυ

kT
=

hc

λkT

=

(
6.63× 10−34Js

) (
3× 108ms−1

)(
5000× 10−10m

) (
1.38× 10−23JK−1

)
300K

= 96.03

The rate of spontaneous emission = (e96.03 − 1)× rate of stimulated emission

= 4.073× rate of stimulated emission

Microwave region: Wavelength ∼= 1cm. Therefore,

hυ

kT
=

hc

λkT

=

(
6.63× 10−34Js

) (
3× 108ms−1

)
(0.01m)

(
1.38× 10−23JK−1

)
300K

= 0.004
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The rate of spontaneous emission = (e0.004 − 1)× rate of stimulated emission

= 0.004× rate of stimulated emission.

Problem: 3.3- Prove the following:

I: If the source temperature is 1000K, in the optical region
(
λ = 5000Å

)
, the emission

is predominantly due to spontaneous transitions.

II: If the source temperature is 300K, in the microwave region (λ = 1cm), the emission

is predominantly due to stimulated transitions. The Boltzmann constant is 1.38 ×
10−23JK−1.

Solution

Spontaneous emission rate/Stimulated emission rate = exp
(
hυ
kT

)
− 1

I: In the optical region (λ = 5000× 1010m), T = 1000K

υ =
c

λ
=

3× 108

5000× 10−10 = 6× 1014Hz

hυ

kT
=

6.63× 10−34 × 6× 1014

1.38× 10−23 × 1000
= 28.8

exp (28.8)− 1 = 3.22× 1012

Thus, the spontaneous emission is predominant.

II. In the microwave region (λ = 0.01m), T = 300K

υ =
c

λ
=

3× 108

10−2 = 3× 1010Hz

hυ

kT
=

6.63× 10−34 × 3× 1010

1.38× 10−23 × 300
= 4.8× 10−3

exp
(
4.8× 10−3

)
− 1 = 0.0048.

Therefore, the stimulated emission is predominant.
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Problem: 3.4- The time varying Hamiltonian H ′ (t) induces transitions between states

|j⟩ and |k⟩. Using time-dependent perturbation theory, show that the probability for

a transition from state |j⟩ to state |k⟩ is the same as the probability for a transition

from state |k⟩ to state |j⟩.

Solution

The probability for transition from state |j⟩ to state |k⟩ at time t is Pjk (t) The relation

is

Pjk (t) =

∣∣∣∣∣∣ 1iℏ
t∫

0

⟨k |H ′| j⟩ exp (iωkjt
′) dt′

∣∣∣∣∣∣
2

So the equation becomes

Pjk (t) =

∣∣∣∣∣∣ 1iℏ
t∫

0

H ′
kj (t

′) exp (iωkjt
′) dt′

∣∣∣∣∣∣
2

The probability for transition from state |k⟩ to state |j⟩ at time t is given by

Pkj (t) =

∣∣∣∣∣∣ 1iℏ
t∫

0

⟨j |H ′| k⟩ exp (iωjkt
′) dt′

∣∣∣∣∣∣
2

Since H ′ is Hermitian, ⟨k |H ′| j⟩ = ⟨j |H ′| k⟩. Also, it follows that ωkj =
Ek−Ej

ℏ = −ωjk.

As the integrant of the second integral is the complex conjugate of that of the first

one, we have

Pkj (t) = Pjk (t)

Problem: 3.5- A quantum mechanical system is initially in the ground state |0⟩. At
t=0, a perturbation of the formH ′ (t) = H◦e

−αt, where α is a constant, is applied. Show

that the probability that the system is in state |1⟩ after long time is P01 =
|⟨0|H◦|1⟩|2

ℏ2(α2+ω2
10)

,

ω10 =
E1−E0

ℏ .

Solution

In the first order perturbation, the transition probability is given by equation,
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P01 (t) =

∣∣∣∣∣∣ 1iℏ
t∫

0

H ′
10(t) exp (iω10t

′) dt′

∣∣∣∣∣∣
2

where,

H ′
10(t) = ⟨1 |H ′(t′)| 0⟩ and ω10 =

E1 − E0

ℏ
Substituting the value of H ′(t) and allowing t→ ∞, we get

P01 (t) =

∣∣∣∣∣∣ 1iℏ
∞∫
0

exp (iω10t) e
−αt ⟨1 |H◦| 0⟩ dt

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣ 1iℏ
∞∫
0

exp (iω10 − α) t ⟨1 |H◦| 0⟩ dt

∣∣∣∣∣∣
2

P01 (t) =

∣∣∣∣⟨1 |H◦| 0⟩
iℏ

∣∣∣∣exp [− (α− iω10) t]

− (α− iω10)

∣∣∣∣∞
0

∣∣∣∣2
=

∣∣∣∣⟨1 |H◦| 0⟩
iℏ

1

α− iω10

∣∣∣∣2
The probability for a transmission from state |0 > to a state |1 > after a long time is

=
|⟨0 |H◦| 1⟩|2

ℏ2(α2 + ω2
10)

∵ H◦ is Hermiteian

So

⟨1 |H◦| 0⟩ = ⟨0 |H◦| 1⟩

and

(α− iω10)
2 = (α− iω10) (α + iω10)

= α2 + iω2
10
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Chapter 4

Scattering Theory

SOLVED PROBLEMS
Problem: 4.1- A beam of particles is incident normally on a thin metal foil of thickness

t. if N◦is the number of nuclei per unit volume of the foil, show that the fraction of

incident particles scattered in the direction (θ, ϕ)is D(θ)N◦tdΩ, where dΩ is the small

solid angle in the direction (θ, ϕ).

Solution

We know that, the differential scattering cross-section is

D(θ) =
dN/dΩ
Jin

Where dN is the number scattered into solid angle dΩ in the direction (θ, ϕ) per unit

time and Jinis the incident flux. Hence,

dN = D(θ)JindΩ

This is the number scattered per unit time by a single nucleus. The number of nuclei

in a volume At = N◦At. The number scattered by N◦At nuclei = D(θ)JindΩN◦At.

Thus, Number of particles striking an area A per second = JinA. Fraction scattered

in the direction (θ, ϕ) is



=
D(θ)JindΩN◦At

JinA

=D(θ)N◦tdΩ = N◦tdσ

Problem: 4.2- In the theory of scattering by a fixed potential, the asymptotic form of

the wave function is

ψ −−−→
r→∞

A

[
eikz + f (θ)

eikr

r

]
Obtain the formula for scattering cross-section in terms of the scattering amplitude

f (θ).

Solution

The probability current density J (r, t) is given by

J (r, t) =
iℏ
2m

(ψ∇ψ∗ − ψ∗∇ψ)

If J (r, t) is calculated with the given wave function, we get interference terms between

the incident and scattered wave. In the experimental arrangements, these do not ap-

pear. Hence we calculate the incident and scattered probability current densities Jin

and Jsc separately. The value of Jin due to Aeikzis

Jin =
iℏ
2m

[
|A|2 (−ik)− |A|2 (ik)

]
Jin =

ℏk|A|2

m

The scattered probability current density due to Af(θ) e
ikr

r

Jsc =
iℏ
2m

|A|2|f (θ)|2
[
−ik
r2

− 1

r3
− ik

r2
+

1

r3

]
Jsc =

ℏk
m

|A|2|f (θ)|2 1
r2

The differential scattering cross-section D (θ).
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D(θ) =
Jsc
Jin

dA

dΩ

=

(ℏk
m

)
|A|2|f (θ)|2 · 1

r2
· r2dΩ

ℏk
m
|A|2dΩ

D (θ) =|f (θ)|2

Problem: 4.3- Using Born approximation, calculate the differential and total cross-

sections for scattering of a particle of mass mby the δ−function potential V (r) =

gδ (r) , g =constant.

Solution

The scattering amplitude

f (θ) = − m

2πℏ2

∫
exp (iq.r′)V (r′) d3τ ′

Where q = k − k′and q = 2k sin θ
2
. Here, kand k′are respectively, the wave vectors of

the incident and scattered waves. Substituting the value of V (r), we get

f (θ) = − mg

2πℏ2

∫
exp (iq.r′) δ (r′) d3τ ′ ∵ δ(n) =

[1 for n=0

0 other wise

Using the definition of δ−function, we get

f (θ) = − mg

2πℏ2

The differential scattering cross-section is

D (θ) = |f (θ)|2 = m2g2

4π2ℏ4

Since the distribution is isotropic, the total cross-section is given by

σ = 4πD(θ) =
m2g2

πℏ4
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Problem: 4.4- Write the asymptotic form of the wave function in the case of scattering

by a fixed potential and explain. Also, what is Born approximation?

Solution

The general asymptotic solution is

ψ −−−→
r→∞

A

[
eikz + f (θ)

eikr

r

]
(4.1)

Where A is a constant. In this, the part eikzrepresents the incident plane wave along

the z−axis. The wave vector k is given by

k2 =
2mE

ℏ2
,

Where E is the energy. The second term of equation (i) represents the spherically

diverging scattered wave. The amplitude factor f (θ) is called the scattering amplitude.

If the potential V ( #»r ) is weak enough, it will distort only slightly the incident plane

wave.

Problem: 4.5- What is the formula for the first Born approximation for scattering

amplitude f (θ)? Under what condition is the Born approximation valid?

Solution

In the first Born approximation, the scattering amplitude

f(θ) = −2m

ℏ2q

∫ ∞

0

sin(qr
′
)V (r

′
)r′dr′

Where qℏ is the momentum transfer from the incident particle to the scattering po-

tential and

|q| = 2|k|sinθ
2

With angle θ being the scattering angle, V (r)the potential, and m the mass. More-

over, the Born approximation is valid for weak scattering potentials and large incident

energies.
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Chapter 5

Relativistic Quantum Mechanics

SOLVED PROBLEMS
Problem: 5.1- Write Dirac’s equation for a free particle. Find the probability density

and the probability current density in Dirac’s formalism.

Solution

Dirac’s equation for a free particle is

iℏ
∂

∂t
Ψ(r, t) = −icℏα.∇Ψ + βm◦c

2Ψ (5.1)

Here, α and β are 4× 4 matrices and Ψ (r, t) is a four-column vector. The Hermitian

conjugate of above equation is

iℏ
∂

∂t
Ψ ∗(r, t) = +icℏα.∇Ψ ∗ + βm◦c

2Ψ ∗ (5.2)

Multiplying Eq(5.1) by Ψ † on left, Eq(5.2) by Ψ on right, and subtracting one from

the other, we get

iℏ
(
Ψ †∂Ψ

∂t
− ∂Ψ †

∂t
Ψ

)
= −icℏ

(
Ψ †α.∇Ψ +∇Ψ †.αΨ

)
∂

∂t

(
Ψ †Ψ

)
+∇.

(
cΨ †αΨ

)
= 0

∂

∂t
ρr(r, t) +∇.Jr(r, t) = 0 (5.3)



Where,

Jr (r, t) = cΨ †αΨ ; ρr (r, t) = Ψ †Ψ

Eq(5.3) is the continuity equation and the equation ρr (r, t) and Jr (r, t) are the prob-

ability density and probability current density, respectively.

Problem: 5.2- For a Dirac particle moving in a central potential, show that the orbital

angular momentum is not a constant of motion.

Solution

In the Heisenberg picture, the time rate of change of the L = r × P is given by

iℏ
dL

dt
= [L,H]

Its x-component is

iℏ
d

dt
Lx = [Lx, H] =

[
ypz − zpy, cα.P + βmoc

2
]

=[ypz, cα.P ] + [ypz, βmoc
2]− [zpy, cα.P ]− [zpy, βmoc

2]

Since α and β commute with r and p,

iℏ
d

dt
Lx = [ypz, cαy.py]− [zpy, cαzpz]

iℏ
d

dt
Lx =cαy [y, py] pz − cαz [z, pz] py ∵ [y, Py] = iℏ ; [Px, Py] = 0

=cαyiℏpz − cαziℏpy
=ciℏ(pzαy − pyαz) ̸= 0

Which shows that Lxis not a constant of motion. Similar relations hold good for Lyand

Lz components. Hence the orbital angular momentum L is not a constant of motion.

Quanta Publisher 29 Quantum Mechanics - II



CHAPTER 5. RELATIVISTIC QUANTUM MECHANICS

Problem: 5.3- If one wants to write the relativistic energy E of a free particle as

E2

c2
= (α.P + βm2c)

2,

Show that α′s and β′s have to be matrices and establish that they are non-singular

and Hermitian.

Solution

The relativistic energy (E) of a free particle is given by

E2 = c2P 2 +m2
oc

4 = c2
(
P 2 +m2

oc
2
)

When E2/c2 is written as given in the problem,

E2

c2
=P 2 +m2

oc
2 = (α.P + βmoc)

2

=(α.P )2 + (βmoc)
2 + α.Pβmoc+ βmocα.P

=α2
xp

2
x + α2

yp
2
y + α2

zp
2
z ∵

(a+ b+ c)2 = a2 + b2 + c2 + ab+

ba+ bc+ cb+ ca+ ac

+ β2m2
oc

2 + (αxαy + αyαx) pxpy + (αxαz + αzαx) pxpz

+ (αyαz + αzαy) pypz + (αxβ + βαx)mocpx

+ (αyβ + βαy)mocpy + (αzβ + βαz)mocpz

For this equation to be valid, it is necessary that

α2
x = α2

y = α2
z = β2 = 1, {αx, αy} = 0, {αy, αz} = 0

{αz, αx} = 0, {αx, β} = 0, {αy, β} = 0, {αz, β} = 0

It is obvious that the α′s and β′s can not be ordinary numbers. The anti-commuting

nature of the α′s and β′s suggests that they have to be matrices. Since the square of

these matrices are unit matrices, they are non-singular. As the α′s and β′s determine

the Hamiltonian, they must be Hermitian.
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Problem: 5.4- show that the given matrix is not a constant of motion.

σ′ =

σ 0

0 σ


Solution

The equation of motion of σ′ in the Heisenberg picture is

iℏ
dσ′

dt
= [σ′, H]

Hence for σ′ to be a constant of motion, σ′
x, σ

′
y and σ′

z should commute with the

Hamiltonian. Thus,

iℏ
dσ

′

dt
= [σ′

x, H] =
[
σx

′, cα.P + βmoc
2
]

=[σ′
x, cα · P ] + [σ′

x, βm◦c
2]

Since σ′
x commutes with β,

iℏ
dσ

′

dt
= [σ′

x, cαxpx] + [σ′
x, cαypy] + [σ′

x, cαzpz]

Since,

[σ′
x, αx] = 0, [σ′

x, αy] = 2iαz, [σ
′
x, αz] = −2iαy

iℏ
dσ

′

dt
= [σ′

x, H] = 2ic(αzpy − αypz) ̸= 0

Hence the result.

Problem: 5.5- Show that Dirac’s Hamiltonian for a free particle commutes with the

operator σ.P , where P is the momentum operator and σ is the Pauli spin operator in

the space of four component spinors.

Solution

Dirac’s Hamiltonian for a free particle is

H = c (α.P ) + βmoc
2
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where,

α =

0 σ

σ 0

 ; β =

I 0

0 −I



α.P =

0 σ

σ 0

 . P =

 0 σ.P

σ.P 0



σ.P =

σ.P 0

0 σ.P


[σ.P,H] =

[
σ.P, cα.P + βmoc

2
]
= [σ·P, cα·P ]+[σ·P, βm◦]c

2 = c [σ.P, α · P ]+[σ.P, β]m◦c
2

= c


σ.P 0

0 σ.P

 ,

 0 σ.P

σ.P 0


+m◦c

2


σ.P 0

0 σ.P

 ,

I 0

0 −I




= 0 + 0 = 0

Hence the result.
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Chapter 6

Application to Quantum Mechanics

SOLVED PROBLEMS
Problem: 6.1- A sample of certain element is placed in a 0.300 T magnetic field and

suitably excited. How far apart are the Zeeman components of 450 nm spectral line of

this element ?

Solution

The separation of the Zeeman component is

∆ν =
eB

4πm

Since, ν = c/λ, dν = −cdλ/λ2, and so, disregarding the minus sign,

∆λ =
λ2∆ν

c
=

eBλ2

4πmc

=
1.60× 10−19 × 0.300 × (4.50× 10−7)2

4π9.11× 10−31 × 3.00× 108
= 2.83× 10−12 m = 0.00283m

Problem: 6.2- Compute the change in wavelength of the 2p → 1s photon when a

hydrogen atom is placed in a magnetic field of 2.00T .

Solution

The energy of the photon from n = 2 to n = 1 is E = −13.6eV
(

1
22

− 1
12

)
= 10.2eV ,

and its wavelength is λ = hc/E = (1240eV.nm)/(10.2eV ) = 122nm. The energy
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change ∆E of the levels is

∆E = µBB =(9.27× 10−24J/T )(2.00T )

=18.5× 10−24J = 11.6× 10−5eV

We know that

∆λ =
λ2

hc
∆E

=
(122nm)2

1240eV.nm
11.6× 10−5eV

=0.00139nm

Even for fairly large magnetic field of 2T , the change on wavelength is very small, but

it is easily measureable using an optical spectrometer.

Problem: 6.3- A collection of hydrogen atoms is placed in a magnetic field of 3.50T .

Ignoring the effects of electron spin, find the wavelengths of the three normal Zeeman

components of the 3d to 2p transition.

Solution

In the absence of a magnetic field, the 3d to 2p energy difference is

E = (−13.6057eV )

(
1

32
− 1

22

)
= 1.88968eV

and the wavelength is

λ =
hc

E

=
1239.842eN.nm

1.88968eV

=656.112nm

The magnetic field gives a change in wavelength of
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∆λ =
λ2

hc
∆E

=
(656.112nm)2

1239.842eV.nm
(5.79× 10−5eV/T )(3.50T )

=0.0703nm

The wavelengths of the three normal Zeeman components are then 656.112nm,

656.112nm+ 0.070nm = 656.182nm, and 656.112nm− 0.070nm = 656.042nm.

Problem: 6.4- In a normal Zeeman effect experiment using a magnetic field of a stregth

0.3T , find the splitting between the components of a 660nm spectral line.

Solution

Given that

B =0.3T

λ =660nm

We know that

∆λ =
eBλ2

4πmc

=
1.6× 10−19 × 0.3× (660× 10−9)2

4× 3.14× 9.1× 10−31 × 108

=6.08× 10−12m = 6pm

Problem: 6.5- Calculate the wavelengths of the components of the first line of the

Lyman series, taking the fine structure of the 2p level into account.

Solution

The energy of the 2p to 1s Lyman transition is

E = (−13.6057eV )

(
1

22
− 1

12

)
= 10.20428eV

and its wavelength (in the absence of fine structure) is
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λ =
hc

E

=
1239.842eN.nm

10.20428eV

=121.5022nm

With the fine structure energy splitting of 4.5× 10−5eV , the wavelength splitting is

∆λ =
λ2

hc
∆E

=
(121.5nm)2

1240eV.nm
(4.5× 10−5eV )

=0.00054nm

The fine structure splits one level up by 0.5∆E and the other down by the same

amount, so the wavelengths are

λ+
1

2
∆λ = 121.5024nm

and

λ− 1

2
∆λ = 121.5019nm
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