


# MECHANICS -II



## Dr. Anwar Manzoor Rana Dr. Syed Hamad Bukhari Jamshaid Alam Khan

#### TEACH YOURSELF

### Mechanics-II

1st Edition

For BS Physics/Chemistry/Mathematics students

•

#### Dr. Anwar Manzoor Rana

Department of Physics Bahauddin Zakariya University, Multan

&

#### Dr. Syed Hamad Bukhari

Department of Physics G.C. University Faisalabad, Sub-Campus, Layyah

&

#### Jamshid Alam Khan

Department of Physics Postgraduate College, Khanewal

Quanta Publisher, 2660/6C Raza Abad, Shah Shamas, Multan.

### Contents

| 1        | Rotational Dynamics          | 1  |
|----------|------------------------------|----|
| <b>2</b> | Angular Momentum             | 5  |
| 3        | Gravitation                  | 9  |
| 4        | Bulk Properties of Matters   | 13 |
| <b>5</b> | Special Theory of Relativity | 18 |

### Chapter 1

### **Rotational Dynamics**

### SOLVED PROBLEMS

**Problem: 1.1-** Engine or a car develops 120 hp power when rotating at 1750  $rev m^{-1}$ . How much torque does it deliver?

#### Solution

Power = 
$$P = 120 \ hp = 120 \times 746 \ watt$$
  $\therefore 1hp = 746 \ watt$   
Power =  $P = 8.95 \times 10^4 \ W$   
Angular velocity =  $\omega = 1750 \ rev.m^{-1} = \frac{1750 \times 2\pi}{60} \ rads^{-1}$   
Angular velocity =  $\omega = 183.17 \ rads^{-1}$   
Torque =  $\tau = ?$ 

/ DIIRIICHER

Since,

$$P = \tau \omega$$
$$\Rightarrow \tau = \frac{P}{\omega}$$

$$\tau = \frac{8.95 \times 10^4}{183.17}$$
  
$$\tau = 488.73 \ Nm$$

**Problem: 1.2-** Calculate the rotational inertia of solid sphere of mass 30 kg and diameter 20 cm about its any diameter and about tangential axis.

#### Solution

Mass of solid sphere  $= M = 30 \ kg$ Diameter of solid sphere  $= d = 20 \ cm = \frac{20}{100} \ m = 0.2 \ m$ Radius of solid sphere  $= R = \frac{d}{2} = \frac{0.2}{2} = 0.1 \ m$ Rotational inertia about any diameter = I = ?Rotational inertia about tangential axis  $= I_{\text{tan.}} = ?$ 

Since we know that:

$$I = \frac{2}{5}MR^{2}$$

$$I = \frac{2}{5} \times 30 \times (0.1)^{2}$$

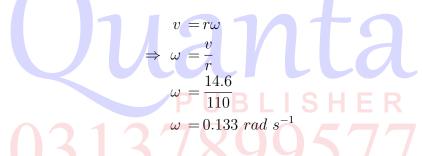
$$I = \frac{2}{5} \times 30 \times 0.01$$
SHER
$$I = 2 \times 6 \times 0.01$$

$$I = 0.12 \ kgm^{2}$$

and, according to parallel axes theorem:

$$I_{\text{tan.}} = I + MR^2$$
$$I_{\text{tan.}} = \frac{2}{5}MR^2 + MR^2$$
$$I_{\text{tan.}} = \frac{7}{5}MR^2$$

$$I_{\text{tan.}} = \frac{7}{5} \times 30 \times (0.1)^2$$
$$I_{\text{tan.}} = 7 \times 6 \times 0.01$$
$$I_{\text{tan.}} = 0.42 \ kgm^2$$


 $\mathbf{2}$ 

Problem: 1.3- Calculate the angular speed of a car rounding a circular turn of radius 110 m at 52.4 km/h.

#### Solution

Radius 
$$= r = 110 m$$
  
Speed  $= v = 52.4 km/h$   
Speed  $= v = \frac{52.4 \times 1000}{3600} m/s$   
Speed  $= v = 14.6 m/s$   
Angular speed  $= \omega = ?$ 

Since we know that the relation between linear and angular speed is:



**Problem: 1.4-** A fly wheel of mass 500 kg and radius 1 m makes 500 rev/min. Assuming the mass to be concentrated along the rim, find rotational kinetic energy of fly wheel.

#### Solution

Since the relation is:

Quanta Publishers

$$K.E_{\text{rot.}} = \frac{1}{2}I\omega^2$$


$$K.E_{\text{rot.}} = \frac{1}{2}mr^2\omega^2 \quad \because I = mr^2$$

$$K.E_{\text{rot.}} = \frac{1}{2} \times 500 \times (1)^2 \times (52.33)^2$$

$$K.E_{\text{rot.}} = 6.871 \times 10^5 J$$

**Problem: 1.5-** A pulley wheel 8.14 cm in diameter has a 5.63 m long cord wrapped around its periphery. Starting from rest, the wheel is given an angular acceleration of  $1.47 \ rad/s^2$ . Through what angle must the wheel turn for the cord to unwind?

#### Solution



### Chapter 2

### Angular Momentum

### SOLVED PROBLEMS

**Problem: 2.1-** The angular momentum of a particle is given as  $\vec{L} = 6t^4\hat{i} - 3t^2\hat{j} + 13t^3\hat{k}$ , find torque at t = 1 sec and at t = 2 sec.

P U B L I S H E R

#### Solution

It is given that

$$\vec{L} = 6t^4\hat{i} - 3t^2\hat{j} + 13t^3\hat{k}$$

$$\vec{\tau} = 3t^2\hat{j} + 13t^3\hat{k}$$

$$\vec{\tau} = \frac{d\vec{L}}{dt}$$

$$\vec{\tau} = \frac{d}{dt}(6t^4\hat{i} - 3t^2\hat{j} + 13t^3\hat{k})$$

$$\vec{\tau} = 24t^3\hat{i} - 6t\hat{j} + 39t^2\hat{k}$$

$$\vec{\tau} = 24\hat{i} - 6\hat{j} + 39\hat{k}$$
 units at  $t = 1s$   
 $\vec{\tau} = 192\hat{i} - 12\hat{j} + 156\hat{k}$  units at  $t = 2s$ 

Problem: 2.2- Find the angular momentum of earth about its own axis.

#### Solution

Angular momentum of earth about its own axis is,

$$L = I\omega$$
$$L = \frac{2}{5}MR^2 \times \frac{2\pi}{T}$$

Since,

Moment of inertia of earth 
$$= I = \frac{2}{5}MR^2$$
  
Angular frequency  $= \omega = \frac{2\pi}{T}$   
Mass of earth  $= M = 6 \times 10^{24}kg$   
Radius of earth  $= R = 6.4 \times 10^6 m$   
Time period  $= T = 86400s$   
so,  
 $L = \frac{2}{5} \times 6 \times 10^{24}(6.4 \times 10^6)^2 \times \frac{2\pi}{86400}$   
 $L = \frac{2}{5} \times 6 \times 10^{24} \times 40.96 \times 10^{12} \times \frac{6.28}{86400}$   
 $L = \frac{3086.74}{432000} \times 10^{36}$   
 $L = 0.0071 \times 10^{36}$   
 $L = 7.1 \times 10^{33}Js$ 

**Problem: 2.3-** What is angular momentum of a 95kg man running with a speed of  $5.1ms^{-1}$  on a circular track of radius 25m?

#### Solution

Mass 
$$= m = 95kg$$
  
Speed  $= v = 5.1ms^{-1}$   
Radius  $= r = 25m$ 

Angular momentum is defined as:

$$L = mvr$$
$$L = 95 \times 5.1 \times 25$$
$$L = 1.2 \times 10^4 kgm^2 s^{-1}$$

**Problem: 2.4-** A star (considering uniform sphere) of radius  $2.3 \times 10^8 m$  rotates with an angular speed  $2.6 \times 10^{-6} rads^{-1}$ . If this star collapses to radius of 20000m, find its final angular speed.

#### Solution

$$R_{1} = 2.3 \times 10^{8} m$$

$$R_{2} = 20000m$$

$$\omega_{1} = 2.6 \times 10^{-6} \ rads^{-1}$$

$$\omega_{2} = ? \quad \textbf{BLISHER}$$
According to law of conservation of angular momentum,
$$I_{1}\omega_{1} = I_{2}\omega_{2}$$

$$\omega_{2} = \left(\frac{I_{1}}{I_{2}}\right)\omega_{1}$$

$$\omega_{2} = \left(\frac{\frac{2}{5}MR_{1}^{2}}{\frac{2}{5}MR_{2}^{2}}\right)\omega_{1}$$

$$\omega_{2} = \left(\frac{2.3 \times 10^{8}}{\frac{2}{5}MR_{2}^{2}}\right)\omega_{1}$$

$$\omega_{2} = \left(\frac{2.3 \times 10^{8}}{20000}\right)^{2} \times 2.6 \times 10^{-6}$$

$$\omega_{2} = \frac{12.696}{4 \times 10^{8}} \times 10^{10}$$

$$\omega_{2} = 3.174 \times 10^{2} = 317 \ rads^{-1}$$

Problem: 2.5-In a light wind, a wind mill experiences a constant torque of 255 Nm. If windmill is initially at rest, what is its angular momentum after 2 s?

#### Solution

$$\tau = 255 \ Nm$$
  
 $L_i = 0$   
 $dt = 2s$  [As windmill is at rest]  
 $L_f = ?$ 

Since the relation between the torque and angular momentum is given as:

dt

 $=\frac{dL}{dt}$  $\Rightarrow dL = \tau dt$  $\Rightarrow L_f - L_i = \tau dt$  $L_f - 0 = 255 \times 2$  $L_f = 510 kgm^2 s^{-1}$ www.quantagalaxy.com

### Chapter 3

### Gravitation

### SOLVED PROBLEMS

**Problem: 3.1-** Calculate the potential energy of the moon-earth system relative to the potential energy at infinite separation.

#### Solution

As we know that:

Mass of earth  $= M = 6 \times 10^{24} kg$ Mass of moon  $= m = 7.36 \times 10^{22} kg$ Separation distance  $= r = 3.82 \times 10^8 m$ Gravitational constant  $= G = 6.67 \times 10^{-11} Nm^2 kg^{-2}$ 

Since,

$$U(r) = -\frac{GMm}{r}$$

$$U(r) = -\frac{6.67 \times 10^{-11} \times 6 \times 10^{24} \times 7.36 \times 10^{22}}{3.82 \times 10^8}$$

$$U(r) = -\frac{294.55 \times 10^{35}}{3.82 \times 10^8}$$

$$U(r) = -77.10 \times 10^{27}$$

$$U(r) = -7.71 \times 10^{28} J$$

**Problem: 3.2-** Calculate the gravitational force between two 7.3 kg bowling balls separated by 0.65 m between their centers.

#### Solution

Mass of each bowling ball  $= m_1 = m_2 = 7.3 \ kg$ Distance between centers of balls  $= r = 0.65 \ m$ Gravitational constant  $= G = 6.67 \times 10^{-11} \ Nm^2 kg^{-2}$ Gravitational force = F = ?

Since we know that:

$$F = G \frac{m_1 m_2}{r^2}$$

$$F = 6.67 \times 10^{-11} \frac{7.3 \times 7.3}{(0.65)^2}$$

$$F = \frac{355.44 \times 10^{-11}}{0.4225}$$

$$F = 841.28 \times 10^{-11}$$

$$F = 8.41 \times 10^{-9} N$$

Problem: 3.3- A satellite orbits at a height of 230 km above the surface of earth. Calculate the period of satellite.

#### Solution

Mass of earth 
$$= M = 6 \times 10^{24} kg$$
  
Height  $= h = 230 km = 230 \times 10^3 m$   
Radius of satellite orbit  $= r = R + h = 6400 + 230 = 6630 \times 10^3 m$   
Gravitational constant  $= G = 6.67 \times 10^{-11} Nm^2 kg^{-2}$ 

Now according to law of periods, we have

$$T^2 = \frac{4\pi^2 r^3}{GM}$$

Quanta Publishers

$$T = \sqrt{\frac{4\pi^2 r^3}{GM}}$$

$$T = \sqrt{\frac{4 \times (3.14)^2 \times (6630 \times 10^3)^3}{6.67 \times 10^{-11} \times 6 \times 10^{24}}}$$

$$T = \sqrt{\frac{39.44 \times 2.91 \times 10^{11} \times 10^9}{40.02 \times 10^{13}}}$$

$$T = \sqrt{\frac{114.77 \times 10^{20}}{40.02 \times 10^{13}}}$$

$$T = \sqrt{2.8678 \times 10^7}$$

$$T = \sqrt{28.678 \times 10^6}$$

$$T = 5.355 \times 10^3$$

$$T = 5355 s$$

**Problem: 3.4-** A reconnaissance spacecraft circles the moon at very low altitude. Calculate its speed.

#### Solution

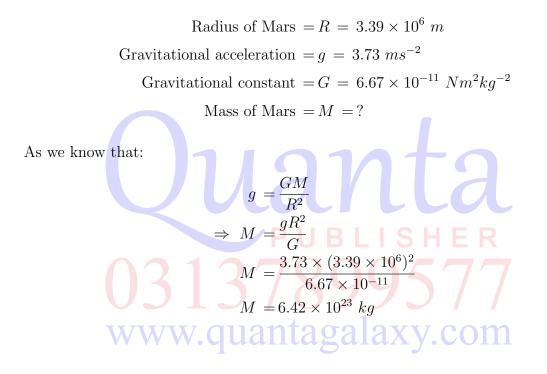
PUBLISHER  
Mass of the moon 
$$= M = 7.36 \times 10^{22} kg$$
  
Radius of orbit  $= r = 1.74 \times 10^6 m$   
Gravitational constant  $= G = 6.67 \times 10^{-11} Nm^2 kg^{-2}$   
Speed of spacecraft  $= v = ?$ 

Since the relation is:

$$v = \sqrt{\frac{GM}{r}}$$

$$v = \sqrt{\frac{6.67 \times 10^{-11} \times 7.36 \times 10^{22}}{1.74 \times 10^6}}$$

$$v = \sqrt{\frac{49.091 \times 10^{11}}{1.74 \times 10^6}}$$


$$v = \sqrt{28.213 \times 10^5}$$

$$v = \sqrt{282.13 \times 10^4}$$

$$v = 16.79 \times 10^2 \ ms^{-1}$$
  
 $v = 1.67 \times 10^3 \ ms^{-1}$ 

**Problem: 3.5-** Find the mass of Mars having radius  $3.39 \times 10^6 \ m$ . Given that acceleration due to gravity on surface of Mars is  $3.73 \ ms^{-2}$ .

#### Solution



### Chapter 4

### **Bulk Properties of Matters**

### SOLVED PROBLEMS

**Problem: 4.1-** A cube of *Al* of side 10 *cm* is subjected to a shearing force of 100*N*. The top surface of cube is displaced by 0.01 *cm* w.r.t. bottom. Calculate shearing stress, shearing strain and modulus of rigidity.

#### Solution

Length of side of cube = l = 0.1mArea of one side of cube  $= A = 0.1 \times 0.1 = 0.01m^2$ Tangential force = F = 100N

so the shearing stress is given as

Shearing stress 
$$=\frac{F}{A}$$
  
Shearing stress  $=\frac{100}{0.01} = 10^4 Nm^{-2}$ 

also,

Displacement 
$$= \Delta x = 0.01 cm = 0.0001 m$$
  
Thickness  $= L = 0.1 m$ 

 $\mathrm{so},$ 

Shearing strain 
$$= \frac{\Delta x}{L}$$
  
Shearing strain  $= \frac{0.0001}{0.1} = 10^{-3}$   
and Modulus of rigidity  $= \frac{\text{Shearing stress}}{\text{Shearing strain}}$   
Modulus of rigidity  $= \frac{10^4}{10^{-3}}$   
Modulus of rigidity  $= 10^7 Nm^{-2}$ 

**Problem: 4.2-** Find the pressure in mega pascal 118 m below the surface of ocean. The density of sea water is 1.024  $gm/cm^3$  and atmospheric pressure at sea level is  $1.013 \times 10^5 Nm^{-2}$ .

#### Solution

height or depth = h = 118 mdensity =  $\rho = 1.024 gm cm^{-3} = 1024 kgm^{-3}$   $g = 9.8 ms^{-2}$ atmospheric pressure =  $P_{\circ} = 1.013 \times 10^5 Nm^{-2}$ P = ?

since, we know that

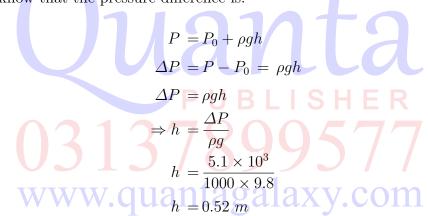
$$P = P_{\circ} + \rho gh$$

$$P = 1.013 \times 10^{5} + 1024 \times 9.8 \times 118$$

$$P = 1.013 \times 10^{5} + 1.184 \times 10^{6}$$

$$P = 1.285 \times 10^{6} Pa$$

$$P = 1.285 MPa$$


$$\therefore 10^{6} = M$$

**Problem: 4.3-** Human lungs operate against a pressure difference less than 0.05 *atm*. How far below the water level can a diver breathe through a long tube.

#### Solution

Pressure difference  $= \Delta P = 0.05 \ atm$ Pressure difference  $= \Delta P = 0.05 \times 1.01 \times 10^5 \ Pa$ Pressure difference  $= \Delta P = 5.1 \times 10^3 \ Pa$ Water density  $= \rho = 1000 \ kgm^{-3}$ Gravitational acceleration  $= g = 9.8 \ ms^{-2}$ Height = h = ?

Since we know that the pressure difference is:



**Problem: 4.4-** A flat plate of area  $10 \ cm^2$  is separated from a large plate by a layer of glycerine 1 mm thick. If viscosity coefficient of glycerine is  $20 \ gm/cm \ sec$ . What force is required to keep the plate moving with velocity of  $1 \ cm/sec$ ?

#### Solution

Velocity  $= v = 1 \ cm/sec$ Force = F = ?

Since we know that the coefficient of viscosity is:

$$\eta = \frac{Fd}{vA}$$

$$\Rightarrow F = \frac{\eta vA}{d}$$

$$F = \frac{2.0 \times 1 \times 10}{0.1}$$

$$F = 200 \ dynes = 200 \times 10^{-5}N$$

$$F = 2 \times 10^{-3}N \qquad \because 1 dyne = 10^{-5}N$$

**Problem: 4.5-** A structural steel rod has a radius of 9.5 mm and a length of 81 cm. A force of  $6.2 \times 10^4 N$  stretches it axially. What is the stress on the rod? What is the elongation of the rod under this load if young's modulus is  $2.0 \times 10^{11} Nm^{-2}$ ?

#### Solution

Radius =  $r = 9.5 mm = 9.5 \times 10^{-3} m$ Length = L = 81 cm = 0.81 mForce =  $F = 6.2 \times 10^4 N$ Young's modulus =  $Y = 2.0 \times 10^{11} Nm^{-2}$ Stress = ? Change in length =  $\Delta L$  = ?

Since we know that

Tensile stress 
$$=\frac{F}{A} = \frac{F}{\pi r^2}$$
  
Tensile stress  $=\frac{6.2 \times 10^4}{3.14 \times (9.5 \times 10^{-3})^2}$   
Tensile stress  $=2.2 \times 10^8 Nm^{-2}$ 

Also, Young's modulus is defined as:

Quanta Publishers

$$Y = \frac{\frac{F}{A}}{\frac{\Delta L}{L}}$$

$$\Rightarrow Y = \frac{FL}{A\Delta L}$$

$$\Rightarrow \Delta L = \frac{FL}{AY}$$

$$\Rightarrow \Delta L = \frac{(F/A)L}{Y}$$

$$\Delta L = \frac{2.2 \times 10^8 \times 0.81}{2.0 \times 10^{11}}$$

$$\Delta L = 8.9 \times 10^{-4} m$$

$$\Delta L = 0.89 mm$$

Ouantagalaxy.com

### Chapter 5

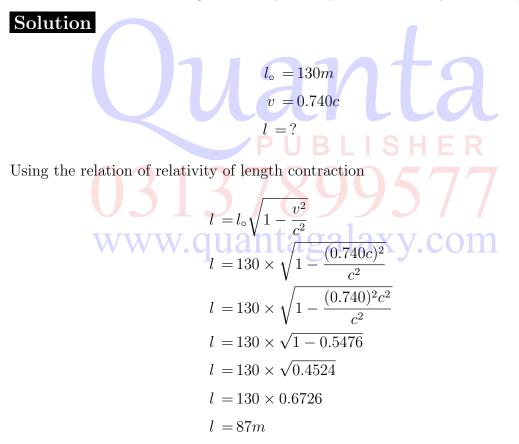
### **Special Theory of Relativity**

### SOLVED PROBLEMS

**Problem: 5.1-** Calculate the speed of a particle whose total energy is equal to twice its rest energy.

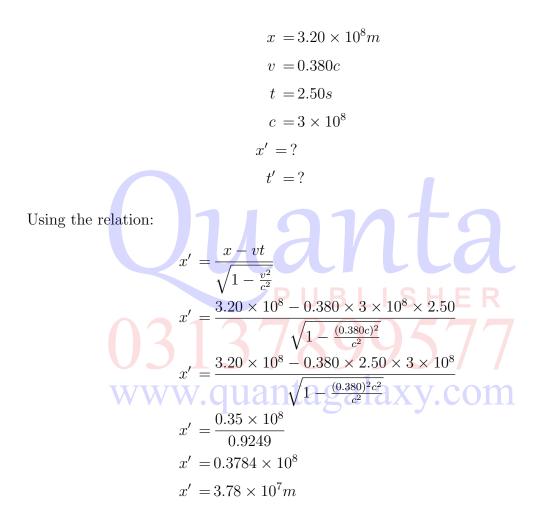
**/**DIIRIICHER

Solution


$$\begin{array}{l} E = 2E_{0} \\ E = 2m_{\circ}c^{2} \\ mc^{2} = 2m_{\circ}c^{2} \\ \hline mc^{2} = 2m_{\circ}c^{2} \\ \hline \frac{m_{\circ}c^{2}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} \\ = 2m_{\circ}c^{2} \\ \hline \frac{1}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} \\ = 2 \end{array}$$

Since  $\beta^2 = \frac{v^2}{c^2}$ , so

$$\frac{1}{\sqrt{1-\beta^2}} = 2$$
  
or  $\sqrt{1-\beta^2} = \frac{1}{2}$ 


$$\begin{aligned} 1 - \beta^2 &= \frac{1}{4} & \because \text{ squaring on both sides} \\ \beta^2 &= 1 - \frac{1}{4} = \frac{3}{4} \\ \Rightarrow \frac{v^2}{c^2} &= \frac{3}{4} \\ \Rightarrow \frac{v}{c} &= \sqrt{\frac{3}{4}} \\ \Rightarrow v &= \frac{\sqrt{3}}{2}c \end{aligned}$$

**Problem: 5.2-** A space ship of rest length 130*m* drifts past a timing station at a speed of 0.740*c*. Calculate the length of the space ship as measured by the timing station.



**Problem: 5.3-** Observer S reports that an event occurred on the x-axis at  $x = 3.20 \times 10^8 m$  at a time t = 2.50s. Observer S' is moving in the direction of increasing x at a speed of 0.380c. What coordinates would S' report for the event?

#### Solution



and

$$t' = \frac{t - v\frac{x}{c^2}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$\begin{aligned} t' &= \frac{2.50 - 0.380c\frac{3.20 \times 10^8}{c^2}}{\sqrt{1 - \frac{(0.380c)^2}{c^2}}}\\ t' &= \frac{2.50 - 0.380\frac{3.20 \times 10^8}{c}}{\sqrt{1 - (0.380)^2}}\\ t' &= \frac{2.50 - 0.380\frac{3.20 \times 10^8}{3 \times 10^8}}{0.9249}\\ t' &= \frac{2.50 - 0.380 \times 1.067}{0.9249}\\ t' &= \frac{2.50 - 0.32}{0.9249}\\ t' &= \frac{2.18}{0.9249}\\ t' &= 2.36s \end{aligned}$$

**Problem: 5.4** The mean life of muons stopped in a lead black is measured  $2.20\mu s$  and mean life of cosmic ray muons observed from earth is found to be  $1.6\mu s$ . Find the speed of cosmic ray muons.

Solution  
PUBLISHER  

$$t_{\circ} = 1.6 \mu s = 1.6 \times 10^{-6} s$$
  
 $t = 2.20 \mu s = 2.2 \times 10^{-6} s$   
 $c = 3 \times 10^8 m s^{-1}$   
 $v = ?$ 

Since the relation for relativity of time is given as

$$t = \frac{t_{\circ}}{\sqrt{1 - \frac{v^2}{c^2}}}$$
  
or  $\frac{1}{t} = \frac{\sqrt{1 - \frac{v^2}{c^2}}}{t_{\circ}}$   
 $\frac{t_{\circ}}{t} = \sqrt{1 - \frac{v^2}{c^2}}$ 

Quanta Publishers

or 
$$\frac{t_o^2}{t^2} = 1 - \frac{v^2}{c^2}$$
  
 $\frac{v^2}{c^2} = 1 - \frac{t_o^2}{t^2}$   
 $v^2 = c^2 \left(1 - \frac{t_o^2}{t^2}\right)$   
 $v = c\sqrt{1 - \frac{t_o^2}{t^2}}$   
 $v = 3 \times 10^8 \sqrt{1 - \frac{(1.6 \times 10^{-6})^2}{(2.2 \times 10^{-6})^2}}$   
 $v = 3 \times 10^8 \sqrt{1 - \frac{2.56}{4.84}}$   
 $v = 0.6862 \times 3 \times 10^8$   
 $v = 2.06 \times 10^8 m s^{-1}$ 

**Problem: 5.5-** What is momentum of proton moving with a speed of v = 0.86c.

#### Solution

Since the relation for relativistic momentum is given as

$$P = \gamma m v$$

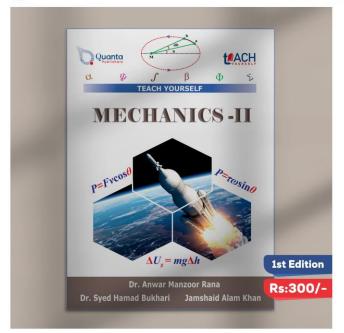
$$P = \frac{m v}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$P = \frac{m v}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Also,

Mass of proton 
$$= m = 1.67 \times 10^{-27} kg$$
  
Speed of light  $= c = 3 \times 10^8 m s^{-1}$   
 $v = 0.86c$ 

so,


$$P = \frac{1.67 \times 10^{-27} \times 0.86 \times 3 \times 10^8}{\sqrt{1 - \frac{(0.86c)^2}{c^2}}}$$

$$P = \frac{1.67 \times 10^{-27} \times 0.86 \times 3 \times 10^8}{\sqrt{1 - \frac{(0.86)^2 c^2}{c^2}}}$$
$$P = \frac{1.67 \times 3 \times 0.86 \times 10^{-19}}{\sqrt{1 - 0.7396}}$$
$$P = \frac{4.3086 \times 10^{-19}}{0.5103}$$
$$P = 8.44 \times 10^{-19} kgms^{-1}$$



#### Quanta Publisher

#### Table of Contents Mechanics-II



| 1 | Rotational Dynamics01                                             |
|---|-------------------------------------------------------------------|
|   | <b>1.1</b> Relationship between Linear and 02                     |
|   | <b>1.2</b> Kinetic Energy of a Rigid Body06                       |
|   | <b>1.3</b> Parallel Axis & Perpendicular Axis Theorems. <b>08</b> |
|   | 1.3.1 Parallel Axis Theorem08                                     |
|   | 1.3.2 Perpendicular Axis Theorem10                                |
|   | <b>1.4</b> Illustrations of Parallel Axes and                     |
|   | <b>1.5</b> Rotational Dynamics of Rigid Bodies                    |
|   | <b>1.6</b> Combined Rotational and Translational 23               |
|   | 1.7 Rolling without Slipping25                                    |
|   | 1.8 Review Questions27                                            |
|   | 1.9 Solved Problems27                                             |
|   | 1.10 Multiple Choice Questions                                    |
| 2 | Angular Momentum 33                                               |
|   | <b>2.1</b> Introduction                                           |
|   | 2.2 Relation between Torque and Angular36                         |
|   | <b>2.3</b> Law of Conservation of Angular Momentum 39             |
|   | 2.4 Stability of Spinning Objects40                               |
|   | <b>2.5</b> The Spinning Top or Precessional Motion42              |
|   | 2.6 Review Questions45                                            |
|   | 2.7 Solved Problems45                                             |
|   | 2.8 Multiple Choice Questions49                                   |
| 3 | Gravitation                                                       |
|   | 3.1 Introduction                                                  |
|   | 3.2 Universal Gravitation Law                                     |
|   | 3.2.1 Henry Cavendish Experiment                                  |
|   | 3.3 Gravitational Effect of a Spherical54                         |
|   | 3.4 Gravitational Potential Energy59                              |
|   | 3.5 Calculation of Escape Velocity63                              |
|   | <b>3.6</b> Gravitational Field and Gravitational                  |
|   | 3.7 Radial and Transversal Components                             |

|   | 3.8 The Motion of Planets and Kepler's Laws703.9 Motion of Satellites753.10 Energy Consideration in Planetary773.11 Universal Law to the Galaxy793.12 Review Questions823.13 Solved Problems823.14 Multiple Choice Questions87 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | Bulk Properties of Matters 88                                                                                                                                                                                                  |
|   | 4.1 Introduction                                                                                                                                                                                                               |
|   | 4.2 Elastic Properties of Matter                                                                                                                                                                                               |
|   | <ul><li>4.3 Tension, Compression and Shearing</li></ul>                                                                                                                                                                        |
|   | <b>4.4</b> Elastic Modulus                                                                                                                                                                                                     |
|   | <b>4.5</b> Poisson's Katto                                                                                                                                                                                                     |
|   | <b>4.7</b> Fluid Statics                                                                                                                                                                                                       |
|   | <b>4.8</b> Surface Tension                                                                                                                                                                                                     |
|   | 4.9 Role of Surface Tension in Formation 108                                                                                                                                                                                   |
|   | <b>4.10</b> Viscosity 109                                                                                                                                                                                                      |
|   | <b>4.11</b> Fluid Flow through a Cylindrical 111                                                                                                                                                                               |
|   | 4.12 Review Questions                                                                                                                                                                                                          |
|   | 4.13 Solved Problems                                                                                                                                                                                                           |
|   | 4.14 Multiple Choice Questions121                                                                                                                                                                                              |
| 5 | Special Theory of Relativity122                                                                                                                                                                                                |
|   | <b>5.1</b> Introduction                                                                                                                                                                                                        |
|   | <b>5.2</b> Postulates of Special Theory of Relativity . 124                                                                                                                                                                    |
|   | 5.3 The Lorentz Transformation                                                                                                                                                                                                 |
|   | <ul><li>5.4 Consequence of Lorentz Transformation 131</li><li>5.5 Doppler Effect</li></ul>                                                                                                                                     |
|   | <b>5.6</b> Twin Paradox                                                                                                                                                                                                        |
|   | 5.7 Transformation of Velocity                                                                                                                                                                                                 |
|   | 5.8 Variation of Mass with Velocity 141                                                                                                                                                                                        |
|   | 5.9 Mass Energy Relation or Relativistic                                                                                                                                                                                       |
|   | 5.10 Relativistic Momentum 146                                                                                                                                                                                                 |
|   | 5.11 Lorentz Invariant Relativistic Energy 148                                                                                                                                                                                 |
|   | 5.12 Review Questions 150                                                                                                                                                                                                      |
|   | 5.13 Solved Problems                                                                                                                                                                                                           |
|   | 5.14 Multiple Choice Questions 156                                                                                                                                                                                             |

#### **Books by Quanta Publisher**



### **Delivering Physics Education with Understanding**

