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Chapter 1

Elementary Particles

SOLVED PROBLEMS
Problem: 1.1- Derive Lagrange’s equation of motion using Newton’s laws.

Solution

In order to derive Lagrange’s equation, consider case of a single particle. Relation

between cartesian and generalized coordinates in one dimension is,

xi =xi(q1, q2, q3, · · · · · · , qn, t)

⇒ dxi =
∂xi
∂q1

dq1 +
∂xi
∂q2

dq2 +
∂xi
∂q3

dq3 + · · · · · ·+ ∂xi
∂qn

dqn +
∂xi
∂t
dt

⇒ dxi =
∑
j

∂xi
∂qj

dqj +
∂xi
∂t
dt ⇒ dxi

dt
=
∑
j

∂xi
∂qj

dqj
dt

+
∂xi
∂t

⇒ ẋi =
∑
j

∂xi
∂qj

q̇j +
∂xi
∂t

⇒ ∂ẋi
∂q̇j

=
∂xi
∂qj

Generalized momentum is,

pj =
∂L

∂q̇j
=

∂

∂q̇j
(T − V ) =

∂T

∂q̇j
=

∂

∂q̇j

∑
i

1

2
miẋ

2
i =

∑
i

miẋi
∂ẋi
∂q̇j

=
∑
i

miẋi
∂xi
∂qj

⇒ ṗj =
∑
i

mi

(
ẍi
∂xi
∂qj

+ ẋi
d

dt

∂xi
∂qj

)
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=
∑
i

miẍi
∂xi
∂qj

+
∑
i

mi

(∑
k

∂2xi
∂qk∂qj

q̇k +
∂2xi
∂qj∂t

)

⇒ dpj
dt

=
∑
i

miẍi
∂xi
∂qj

+
∑
i,k

miẋi
∂2xi
∂qk∂qj

q̇k +
∑
i,k

miẋi
∂2xi
∂t∂qj

⇒ d

dt

(
∂T

∂q̇j

)
=Qj +

∑
i

miẋi
∂

∂qj

(∑
k

∂xi
∂qk

q̇k +
∂xi
∂t

)

Since,

∂T

∂qj
=
∑
i

miẋi
∂ẋi
∂qj

=
∑
i

miẋi
∂

∂qj

(∑
k

∂xi
∂qk

q̇k +
∂xi
∂t

)

So,

d

dt

(
∂T

∂q̇j

)
= Qj +

∂T

∂qj
⇒ d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
= Qj

For conservative forces,

Qj = −∂V
∂qj

So above equation becomes,

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
= −∂V

∂qj
⇒ d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
+
∂V

∂qj
= 0

⇒ d

dt

(
∂T

∂q̇j

)
− ∂

∂qj
(T − V ) = 0

Now potential energy V is a function of position only, then it is independent of gener-

alized velocities q̇j and we can write;

d

dt

(
∂(T − V )

∂q̇j

)
− ∂

∂qj
(T − V ) = 0

In term of Lagrangian above equation becomes,

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0, j = 1, 2, 3, · · · · · · , n
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Where n is the number of degree of freedom of system. These n second order differential

equations are called Lagrange equations or D’Alembert form of Lagrange equations

for a conservative, holonomic dynamical system

Problem: 1.2- Obtain Lagrangian and equation of motion for a double pendulum,

where the lengths of pendula are l1 and l2 with corresponding masses m1 and m2.

Solution

Consider motion of the system in x− y plane. Total number of coordinates are 4 and

total number of constraints are 2 (1 for m1 and 1 for m2). So number of degrees of

freedom = 4 − 2 = 2, i.e. j = 1, 2. To obtain equation of motion, we first express

K.E and P.E in terms of position co-ordinates;

For mass m1;

x1 =l1 cos θ1 −→ (i)

y1 =l1 sin θ1 −→ (ii)

For mass m2;

x2 =l1 cos θ1 + l2 cos θ2 −→ (iii)

y2 =l1 sin θ1 + l2 sin θ2 −→ (iv)

Thus differentiating w.r.t time t, we can write as;

ẋ1 =
d

dt
(l1 cos θ1) = −l1θ̇1 sin θ1, ẏ1 =

d

dt
(l1 sin θ1) = l1θ̇1 cos θ1

ẋ2 =− l1θ̇1 sin θ1 − l2θ̇2 sin θ2, ẏ2 = l1θ̇1 cos θ1 + l2θ̇2 cos θ2

The K.E of the system is;

T =T1 + T2 =
1

2
m1(ẋ

2
1 + ẏ21) +

1

2
m2(ẋ

2
2 + ẏ22) −→ (v)

T =
1

2
m1(l

2
1θ̇

2
1 sin

2 θ1 + l21θ̇
2
1 cos

2 θ1) +
1

2
m2[(l

2
1θ̇

2
1 sin

2 θ1 + l22θ̇
2
2 cos

2 θ1

+ 2l1l2θ̇1θ̇2 sin θ1 sin θ2) + (l21θ̇
2
1 cos

2 θ1 + l22θ̇
2
2 + 2l1l2θ̇1θ̇2 cos θ1 cos θ2)]
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T =
1

2
m1(l

2
1θ̇

2
1) +

1

2
m2[l

2
1θ̇

2
1 + l22θ̇

2
2 + 2l1l2θ̇1θ̇2(sin θ1 sin θ2 + cos θ1 cos θ2)]

T =
1

2
m1(l

2
1θ̇

2
1) +

1

2
m2l

2
1θ̇

2
1 +

1

2
m2l

2
2θ̇

2
2 +m2l1l2θ̇1θ̇2[cos(θ1 − θ2)]

or,

T =
1

2
(m1 −m2)l

2
1θ̇

2
1 +

1

2
m2l

2
2θ̇

2
2 +m2l1l2θ̇1θ̇2 cos(θ1 − θ2) −→ (vi)

Now the potential energy is given by;

V = m1gh1 +m2gh2 −→ (vii)

For first pendulum ∴ h1 = l1 + l2 − x1

h1 = (l1 + l2 − l1 cos θ1) −→ (viii)

For second pendulum ∴ h2 = l1 + l2 − x2

h2 = l1 + l2 − (l1 cos θ1 + l2 cos θ2) −→ (ix)

Therefore;

V = m1g(l1 + l2 − l1 cos θ1) +m2g(l1 + l2 − l1 cos θ1 − l2 cos θ2) −→ (x)

The Lagrangian L is defined as;

L =T − V

or L =
1

2
l21θ̇

2
1(m1 +m2) +

1

2
m2l

2
2θ̇

2
2 +m2l1l2θ̇1θ̇2 cos(θ1 − θ2)−

m1g(l1 + l2 − l1 cos θ1)−m2g(l1 + l2 − cos θ1 − l2 cos θ2) −→ (xi)

Now, Lagrange’s equation of motion are;

d

dt

(
∂L

∂θ̇1

)
−
(
∂L

∂θ1

)
=0 → (1), as for j = 1, q̇j = q̇1 = θ̇1, and qj = q1 = θ1

d

dt

(
∂L

∂θ̇2

)
−
(
∂L

∂θ2

)
=0 → (2), as for j = 2, q̇j = q̇2 = θ̇2, and qj = q2 = θ2

Now, differentiating partially Eq,(xi) w.r.t θ1 and θ̇1 we get
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∂L

∂θ1
=−m2l1l2θ̇1θ̇2 sin(θ1 − θ2)−m1gl1 sin θ1 −m2gl1 sin θ1 −→ (3)

∂L

∂θ̇1
=l21θ̇1(m1 +m2) +m2l1l2θ̇2 cos(θ1 − θ2) −→ (4)

Now

d

dt

(
∂L

∂θ̇1

)
= l21θ̈1(m1 +m2) +m2l1l2θ̈2 cos(θ1 − θ2)−m2l1l2θ̇2(θ̇1 − θ̇2) sin(θ1 − θ2) −→ (5)

Put equations (3) and (5) into Eq. (1)

l21θ̈1(m1 +m2) +m2l1l2θ̈2 cos(θ1 − θ2)−m2l1l2θ̇2 sin(θ1 − θ2)(θ̇1 − θ̇2)

+m2l1l2θ̇1θ̇2 sin(θ1 − θ2) +m1gl1 sin θ1 +m2gl1 sin θ1 = 0

or

l21θ̈1(m1 +m2) +m2l1l2θ̈2 cos(θ1 − θ2)−m2l1l2θ̇1θ̇2 sin(θ1 − θ2)

+m2l1l2θ̇1θ̇2 sin(θ1 − θ2) +m2l1l2θ̇
2
2 sin(θ1 − θ2) + (m1 +m2)gl1 sin θ1 = 0

(m1 +m2)l
2
1θ̈1 +m2l1l2θ̈2 cos(θ1 − θ2) +m2l1l2θ̇

2
2 sin(θ1 − θ2)

= −(m1 +m2)gl1 sin θ1

This is the result of Eq.(1). Similarly the result of Eq.(2) is

(m1 +m2)l
2
2θ̈2 +m2l1l2θ̈1 cos(θ1 − θ2) +m2l1l2θ̇

2
1 sin(θ1 − θ2)

= −m2gl2 sin θ2

Problem: 1.3- The magnitude of force of attraction between positively charged proton

and negatively charged electron in hydrogen atom is,

F = k
e2

r2

Show that change in kinetic energy of electron is,

1

2
ke2
(

1

r2
− 1

r1

)
Where r2 > r1 being radii of two circular orbits.

By how much has the total energy of atom changed is this process?
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CHAPTER 1. ELEMENTARY PARTICLES

Solution

As the electron is revolving in circular orbit, so given force provides necessary cen-

tripetal force i.e.,

mv2

r
= k

e2

r2
⇒ 1

2
mv2 = k

e2

2r
⇒ K = k

e2

2r

Kinetic energy of orbit of radius r1 is,

K1 = k
e2

2r1

Kinetic energy of orbit of radius r2 is,

K2 = k
e2

2r2

Change in kinetic energy is,

∆K = K2 −K1 = K2 = k
e2

2r2
−K1 = k

e2

2r1
⇒ ∆K =

1

2
ke2
(

1

r2
− 1

r1

)
Change in total energy is,

∆E =∆K +∆U =
1

2
ke2
(

1

r2
− 1

r1

)
+

r1∫
r2

− ke2

r2
dr

=
1

2
ke2
(

1

r2
− 1

r1

)
− ke2

∣∣∣∣−1

r

∣∣∣∣r1
r2

⇒ ∆E =
1

2
ke2
(

1

r2
− 1

r1

)
− ke2

(
1

r2
− 1

r1

)
= −1

2
ke2
(

1

r2
− 1

r1

)
This is required change in total energy.

Problem: 1.4- A Lagrangian for a particular physical system can be written as,

L′ =
m

2
(aẋ2 + 2bẋẏ + cẏ2)− k

2
(ax2 + 2bxy + cy2)

Where a, b and c are arbitrary constants but subject to the condition that b2−ac ̸= 0.

What are the equations of motion? Examine particularly the two cases a = 0 = c and
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b = 0, c = −a. What is the physical system described by the above Lagrangian?

What is the significance of the condition on the value of b2 − ac ?

Solution

There are two degrees of freedom, i.e. x and y so that j = 1, 2

L′ =
m

2
(aẋ2 + 2bẋẏ + cẏ2)− k

2
(ax2 + 2bxy + cy2) −→ (1)

∂L′

∂x
=0− k

2
(2ax+ 2by + 0) = −k(ax+ by) −→ (2)

∂L′

∂ẋ
=
m

2
(2aẋ+ 2bẏ + 0)− 0 = m(aẋ+ bẏ) −→ (3)

The Lagrange’s equation for L = L′ will become;

d

dt

(
∂L′

∂ẋ

)
− ∂L′

∂x
= 0 → (4), as for j = 1, q̇j = q̇1 = ẋ, and qj = q1 = x

⇒ d

dt
[m(aẋ+ bẏ)]− [−k(ax− by)] = 0

⇒ m(aẍ+ bÿ) = −k(ax+ by) −→ (5)

The Lagrange’s equation for L = L′ will become;

d

dt

(
∂L′

∂ẏ

)
− ∂L′

∂y
= 0 → (6), as for j = 2, q̇j = q̇2 = ẏ, and qj = q2 = y

∂L′

∂y
= 0− k

2
(0 + 2bx+ 2cy) = −k(bx+ cy) −→ (7)

∂L′

∂ẏ
=
m

2
(0 + 2bẋ+ 2cẏ)− 0 = m(bẋ+ cẏ) −→ (8)

Similarly for y, substituting values in Eq. (6), we obtain

m(bẍ+ cÿ) + k(bx+ cy) = 0

m(bẍ+ cÿ) = −k(bx+ cy) −→ (9)

These are the equations of motion for a particle of massm undergoing simple harmonic

motion in two dimensions, as if bound by two springs of spring constant k.
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CHAPTER 1. ELEMENTARY PARTICLES

Let u1 =ax+ by ⇒ u̇1 = aẋ+ bẏ ⇒ ü1 = aẍ+ bÿ

& u2 =bx+ cy ⇒ u̇2 = bẋ+ cẏ ⇒ ü2 = bẍ+ cÿ

So that Eqs.(5) and (9) can be written as;

mü1 =− ku1 −→ (10)

and mü2 =− ku2 −→ (11)

Now for case I, a = 0, c = 0, so from equations (5) and (9) we have

mbÿ = −kby or mÿ = −ky or ÿ = − k

m
y −→ (12)

and mbẍ = −kbx or mẍ = −kx or ẍ = − k

m
x −→ (13)

For case II, when b = 0 and c = −a, equation (5) and (9) will become

maẍ = −kax ⇒ mẍ = −kx or ẍ = − k

m
x −→ (14)

and −maÿ = −k(−ay) ⇒ mÿ = −ky or ÿ = − k

m
y −→ (15)

In both cases, we have one dimensional harmonic oscillator.

The condition b2− ac ̸= 0 is the condition that the coordinates transformation cannot

be degenerate, i.e., there are actually two distinct dimensions in which the particle

experiences a restoring force. If we have b2 = ac, then we have just a one-dimensional

problem.

Problem: 1.5- Consider the motion of a particle of mass m moving in space. Select-

ing the cylindrical coordinates (r, f, z) as the generalized coordinates, calculate the

generalized force components if a force F acts on it.

Solution

The generalized force corresponding to the coordinate qj

Qj = Fi ·
∂ri
∂qj

= Fx
∂x

∂qj
+ Fy

∂y

∂qj
+ Fz

∂z

∂qj

In cylindrical co-ordinates
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x =ρ cosϕ y = ρ sinϕ and z = z

∂x

∂ρ
=cosϕ

∂x

∂ϕ
= −ρ sinϕ ∂x

∂z
= 0

∂y

∂ρ
=sinϕ

∂y

∂ϕ
= ρ cosϕ

∂y

∂z
= 0

∂z

∂ρ
=0

∂z

∂ϕ
= 0

∂z

∂z
= 1

Substituting these values in the expression for generalized force, we have

Qρ =Fx
∂x

∂ρ
+ Fy

∂y

∂ρ
+ Fz

∂z

∂ρ

=Fx cosϕ+ Fy sinϕ = Fρ

Qϕ =− Fxρ sinϕ+ Fyρ cosϕ = ρFϕ

Qz =Fz

Where Fr, Ff and Fz are the components of the force along the increasing direction of

r, f and z

Problem: 1.6- Masses m and m are connected by a light inextensible string which

passes over a pulley of mass 2m and radius a. Write the Lagrangian and find the

acceleration of the system.

Solution

The system has only one degree of freedom, and x see fig.(1.1) is taken as the gener-

alized coordinate. The length of the string be l and the center of the pulley is taken

as zero for potential energy

K.E. of the system T =
1

2
mẋ2 +mẋ2 +

1

2
Iω2

=
3

2
mẋ2 +

1

2
I

(
ẋ

a

)2

P.E. of the system V =−mgx− 2mg(l − x)

Lagrangian L =
3

2
mẋ2 +

I

2a2
ẋ2 −mgx+ 2mgl

∂L

∂ẋ
=

(
3m+

I

a2

)
ẋ

∂L

∂x
= −mg
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a

l-x

2m
x

m

Fig. 1.1. A Pulley with a string carrying masses m and 2m at its end.

Substitution of these derivatives in Lagrange’s equation gives the equation of motion:(
3m+

I

a2

)
ẍ+mg =0

Acceleration ẍ =− mg

(3m+ I
a2
)
= −g

4

Since moment of inertia of the disc= 1
2
× 2ma2 = ma2. Minus sign indicates mass m

moves upward with the acceleration g/4.

Problem: 1.7- Prove that magnitude R of a position vector from an arbitrary origin

for center of mass distribution m1,m2,m3, · · · ,mn is given by,

M2R2 =
∑
i

m2
i r

2
i −

1

2

∑
ij

mimjr
2
ij

Solution

Center of mass is defined as,

#»

R =
∑
i

mi
#»r i

M
⇒M

#»

R =
∑
i

mi
#»r i

⇒M
#»

R ·M #»

R =
∑
i

mi
#»r i ·

∑
j

mj
#»r j

⇒ M2R2 =
∑
i,j

mimj
#»r i · #»r j (1.1)

Now,

Quanta Publisher 10 Classical Mechanics



#»r ij =
#»r i − #»r j

⇒ #»r ij · #»ij =( #»r i − #»r j) · ( #»r i − #»r j)

⇒ #»r 2
ij =

#»r 2
i +

#»r 2
j − 2 #»r i · #»r j

⇒ 2 #»r i · #»r j =
#»r 2

i +
#»r 2

j − #»r 2
ij

⇒ #»r i · #»r j =
1

2
( #»r 2

i +
#»r 2

j)−
1

2
#»r 2

ij

So equation (1.1) becomes,

M2R2 =
∑
i,j

mimj

{
1

2
(r2i + r2j )−

1

2
r2ij

}
=
∑
i,j

mimj
1

2
(r2i + r2j )−

∑
i,j

mimj
1

2
r2ij

⇒M2R2 =
∑
i

mimj
1

2
(r2i + r2j )−

∑
i,j

mimj
1

2
r2ij =

∑
i

mimj
1

2
(2r2i )−

1

2

∑
i,j

mimjr
2
ij

⇒M2R2 =
∑
i

m2
i r

2
i −

1

2

∑
i,j

mimj r
2
ij

Hence Proved

Problem: 1.8- Prove that grad S = ∇S

Solution

We know that,

∇S =
∂S

∂x
î+

∂S

∂y
ĵ +

∂S

∂z
k̂

Now,

∇S · #»

dr =

(
∂S

∂x
î+

∂S

∂y
ĵ +

∂S

∂z
k̂

)
· (dxî+ dyĵ + dzk̂)

⇒∇S · #»

dr =
∂S

∂x
dx+

∂S

∂y
dy +

∂S

∂z
dz (1.2)

By definition,

grad S =
∂S

∂n
n̂ ⇒ grad S · #»

dr =
∂S

∂n
n̂ · #»

dr

⇒ grad S · #»

dr =
∂S

∂n
dr cos θ
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Consider two surfaces very close together associated with constant values S1 and S2

of scalar field respectively.

Now,

dn

dr
= cos θ ⇒ dn = dr cos θ

⇒ grad S · #»

dr =
dS

dn
dn = dS

In rectangular coordinates,

dS =
∂S

∂x
dx+

∂S

∂y
dy +

∂S

∂z
dz

Therefore,

grad S · #»

dr =
∂S

∂x
dx+

∂S

∂y
dy +

∂S

∂z
dz (1.3)

Comparing equations (1.2) and (1.3), we have

grad S · #»

dr = ∇S · #»

dr ⇒ grad S = ∇S

Problem: 1.9- (a)- Show that for a single particle with constant mass, the equation of

motion implies

dT

dt
=

#»

F · #»v

Where T is kinetic energy,
#»

F is applied force vector and #»v is the velocit6y vector.

(b)- If the mass varies with time, the corresponding equation is,

d

dt
(mT ) =

#»

F · #»p

Solution

(a)- Kinetic energy is,

T =
1

2
mv2 =

m2v2

2m
⇒ T =

p2

2m
⇒ mT =

p2

2
(1.4)
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Now,

dT

dt
=

1

2
m(2 #»v ) ·

(
d #»v

dt

)
⇒ dT

dt
= m #»v · #»a

⇒ dT

dt
= m #»a · #»v ⇒ dT

dt
=

#»

F · #»v

(b)- Differentiating equation (1.4) with respect to t,

d

dt
(mT ) = #»p · d

#»p

dt
= #»p · #»

F ⇒ d

dt
(mT ) =

#»

F · #»p As required

Problem: 1.10- Consider scattering of particles by a rigid sphere of radius R and

calculate the differential and total cross-sections.

Solution Since the sphere is rigid, the potential outside the sphere is zero and that

b
R

Fig. 1.2. Scattering by a rigid sphere

inside is. Fig.(1.2) illustrates the scattering by a rigid sphere. A particle with impact

parameter b > R will not be scattered.If b < R, due to the law of conservation of

momentum and energy a particle incident at an angle a with the normal to the surface

of the sphere will be scattered off on the other side of the normal at the same angle a

(see Fig.(1.2))

we know,

σ(ϕ) = − b db

sinϕ dϕ
(1.5)

Now from figure,
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CHAPTER 1. ELEMENTARY PARTICLES

sinα =
b

R
and ϕ = π − 2α

α =
π − ϕ

2
or sinα = sin

π − ϕ

2
= cos

ϕ

2

Equating the two expressions for sinα

b = R cos
ϕ

2

Substituting this value of b in Eq.(3.6)

σ(ϕ) = − b

sinϕ

db

dϕ
=
R2

4

Which is independent of f and incident energy.

σT =

∫
4π

σ(Ω)dΩ = 2π

π∫
0

σ(ϕ) sinϕ dϕ

=2π
R2

4
[− cosϕ]π0 = πR2

Problem: 1.11- A projectile is launched with muzzle velocity of 1800miles/h at an

angle of 60′ with horizontal and lands on same plane. Find,

(a)- Max height reached.

(b)- Time to reach maximum height.

(c)- Total time of flight.

(d)- Range of projectile.

Solution

Muzzle velocity =v◦ = 1800miles/h =
1800× 1760× 3

60× 60
ft/s = 2640 ft/s

Angle of projection =θ = 60◦

(a)- Max height reached is,
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H =
v2◦ sin

2 θ

2g
=

(2460 ft/s)2 × (sin 60◦)2

2× 32 ft/s2
= 81675 ft

(b)- Time to reach maximum height is,

tm =
v◦ sin θ

g
=

2460 ft/s× sin 60◦

32 ft/s2
= 71.5 s

(c)- Total time of flight is,

tf = 2tm = 2× 71.5 s = 143 s

(d)- Range of projectile is,

R =
v2◦ sin 2θ

g
=

(2460 ft/s)2 × sin 120◦

32 ft/s2
= 188614.800 ft

=
188614.800

1760× 3
miles = 35.72miles

Problem: 1.12- Masses of 1, 2 and 3 kg are located at positions 4ĵ + 3k̂ and 2̂i + 2k̂

respectively. If their velocities are 7̂i,−6ĵ and −3k̂, find the position and velocity of

the center of mass. Also, find the angular momentum of the system with respect to

the origin.

Solution

Radius vector of the center of mass

R =
∑
i

miri
M

=
1(̂i+ ĵ + k̂) + 2(4ĵ + 3k̂) + 3(2̂i+ 2k̂)

6

=
(7̂i+ 9ĵ + 13k̂)

6

Velocity of the center of mass

v =

∑
i

mivi

M
=

1× 7̂i+ 2(−6ĵ) + 3(−3̂i)

6

=
−2̂i− 12ĵ

6
=

−î− 6ĵ

3

The angular momentum vector about the origin
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L =
∑
i

ri ×mivi

=(̂i+ ĵ + k̂)× 7̂i+ (4ĵ + 3k̂)× 2(−6ĵ) + (2̂i+ 2k̂)× 3(−3̂i)

=7ĵ − 7k̂ + 36̂i− 18ĵ = 36̂i− 11ĵ − 7k̂

Problem: 1.13- Particles of masses 1, 2 and 4 kg move under a force such that their

position vectors at time t are respectively r1 = 2̂i + 4t2k̂ , r2 = 4t̂i − k̂, and

r3 = (cosπt)̂i+ (sin πt)ĵ. Find the angular momentum of the system about the origin

at t = 1 s.

Solution

The angular momentum L is given by

L =
∑
i

ri ×miṙi

=(2̂i+ 4t2k̂)× 8tk̂ + (4t̂i− k̂)× 8̂i+ [(cos πt)̂i+ (sin πt)ĵ]× 4π[(− sin πt)ĵ + cos πt)̂i]

=− 16tĵ − 8ĵ + 4π(cos2 πt+ sin2 πt)k̂

(L)t=1s =− 24ĵ + 4πk̂

Problem: 1.14- Consider a system of N particles with masses m1,m2,m3 · · ·mN lo-

cated at cartesian coordinates r1, r2, · · · rN acted upon by forces derivable from a poten-

tial function v(r1, r2, · · · , rN). Show that Lagrange equations of motion reduce directly

to Newton’s second law.

Solution

The kinetic energyT =
N∑
i=1

1

2
miṙ

2
i

Lagrangian L =T − V =
1

2

∑
i

miṙ
2
i − V (r1, r2, · · · , rN)

∂L

∂ri
=− ∂V

∂ri

∂L

∂ṙi
= mṙi Fi = −∂V

∂ri

Identifying the rectangular co-ordinates as the generalized co-ordinates, Lagrange’s

equation can be written as
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d

dt

(
∂L

∂ṙi

)
− ∂L

∂ri
= 0 i = 1, 2, · · · , N

Substituting the above values

d

dt
(miṙi) +

∂L

∂ri
= 0 i = 1, 2, · · · , N

mir̈i = −∂L
∂ri

= Fi i = 1, 2, · · · , N

Which is familiar form of Newton’s second law.

Problem: 1.15- A disc rolling on a horizontal xy-plane is constrained to move such

that the plane of disc is always vertical. Show that the constraint in this example is

non-holonomic

Solution

Consider a disk is rolling on horizontal xy-plane constrained to move such that plane

of disc is always vertical. Let a be radius of disk and let ϕ be angular displacement

made by disk and θ be angle which the axis of disk makes with x-axis.For angular

displacement,

s = aϕ ⇒ ṡ = aϕ̇ ⇒ v = aϕ̇

The components of velocity are;

vx = v cos
(π
2
− θ
)
, vy = −v sin

(π
2
− θ
)

⇒ vx = v sin θ, vy = −v cos θ

Negative sign in vy is due to fact that y-component is along negative y-axis. So we can

write,

ẋ =v sin θ, ẏ = −v cos θ

⇒ ẋ =a sin θϕ̇, ẏ = −a cos θϕ̇

⇒ dx

dt
=a sin θ

dϕ

dt
,

dy

dt
= −a cos θdϕ

dt

⇒ dx−a sin θdϕ = 0 & dy + a cos θdϕ = 0
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Neither of above equation can be integrated, so the constraints are non-holonomic.
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Chapter 2

Variational Principles

SOLVED PROBLEMS
Problem: 2.1- Given a mass spring system consisting of a mass and linear spring of

stiffness k as shown in the Fig.(2.1). Find the equation of motion using Hamiltonian

procedure. Assume that the displacement x is measured from unstressed position of

string.

Solution

Fig. 2.1. The schematic picture which shows the mass spring system.

Let us find K.E. and P.E., so

T =
1

2
mẋ2

and V =
1

2
kx2

Now, the Lagrangian is defined as:



CHAPTER 2. VARIATIONAL PRINCIPLES

L =T − V

L =
1

2
mẋ2 − 1

2
kx2

Also, Hamilton’s Principle is defined as:

δ

t2∫
t1

Ldt =0

or

t2∫
t1

δLdt =0

t2∫
t1

δ

(
1

2
mẋ2 − 1

2
kx2
)
dt =0

t2∫
t1

(
1

2
mδẋ2 − 1

2
kδx2

)
dt =0

t2∫
t1

(
1

2
m(2ẋ)δẋ− 1

2
k(2x)δx

)
dt =0

t2∫
t1

(mẋδẋ− kxδx) dt =0

or

t2∫
t1

mẋ
d

dt
(δx)dt−

t2∫
t1

kxδxdt =0

Evaluating 1st integrate by parts, we have

t2∫
t1

mẋ
d

dt
(δx)dt =mẋδx

∣∣∣t2
t1
−

t2∫
t1

δxmẍdt

t2∫
t1

mẋ
d

dt
(δx)dt =mẋ [δx(t2)− δx(t1)]−

t2∫
t1

δxmẍdt
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t2∫
t1

mẋ
d

dt
(δx)dt =mẋ [δx(t1)− δx(t1)]−

t2∫
t1

δxmẍdt ∵ δx(t1) = 0 = δx(t2)

t2∫
t1

mẋ
d

dt
(δx)dt =mẋ [0]−

t2∫
t1

δxmẍdt

t2∫
t1

mẋ
d

dt
(δx)dt = −

t2∫
t1

δxmẍdt

Therefore, we have

−
t2∫

t1

δxmẍdt−
t2∫

t1

kxδxdt =0

or

t2∫
t1

δxmẍdt+

t2∫
t1

kxδxdt =0

t2∫
t1

(mẍ+ kx) δxdt =0

If an integral is zero, its integrand can also be zero. Therefore,

(mẍ+ kx) δx =0

But, δx ̸=0

So, mẍ+ kx =0

or, ma+ kx =0 ∵ F = ma = mẍ

ma = − kx

Which is the equation of motion. This equation can also be obtained by using Newton’s

law of motion or Lagrange’s equation.
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Problem: 2.2- Obtain Hamilton’s equation for a simple pendulum. Hence obtain an

expression for its period.

Solution

In simple pendulum we use q as the generalized coordinate. For evaluating potential

energy, the energy corresponding to the mean position is taken as zero. The velocity

of the bob v = lθ̇.

Kinetic energy T =
1

2
ml2θ̇2

Potential energy V =mgl(1− cos θ)

L =T − V =
1

2
ml2θ̇2 −mgl(1− cos θ) (2.1)

pθ =
∂L

∂θ̇
= ml2θ̇ or θ̇ =

pθ
ml2

Hamiltonian H(θ, pθ) =θ̇pθ − L

=
1

2ml2
p2θ +mgl(1− cos θ) (2.2)

Hamilton’s equations are;

θ̇ =
∂H

∂pθ
=

pθ
ml2

ṗθ = −∂H
∂θ

= −mgl sin θ (2.3)

θ̈ =
ṗθ
ml2

= −g sin θ
l

Since θ is small, sin θ ∼= θ and above equation reduces to

θ̈ =
−gθ
l

(2.4)

The motion is simple harmonic, and the period T is given by

T = 2π

√
l

g
(2.5)
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Problem: 2.3- A mass m is suspended by a massless spring of spring constant k. The

suspension point is pulled upwards with constant acceleration a0. Find the Hamiltonian

of the system, Hamilton’s equations of motion and the equation of motion.

Solution

Let the vertical be the z-axis. As the acceleration due to gravity is downwards, taking

the net acceleration as (g − a0).

Potential energy V =
1

2
kz2 +m(g − a0)z

Kinetic energy T =
1

2
mż2

L =
1

2
mż2 − 1

2
kz2 −m(g − a0)z (2.6)

pz =
∂L

∂ż
= mż or ż =

pz
m

H =pz ż − L =
p2z
2m

+
1

2
kz2 +m(g − a0)z (2.7)

Hamilton’s equation are

ż =
∂H

∂pz
=
pz
m

(2.8)

ṗz =− ∂H

∂z
= −kz −m(g − a0) (2.9)

The equation of motion is

z̈ =
1

m
ṗz =

1

m
[−kz −m(g − a0)]

mz̈ =− kz −m(g − a0) (2.10)

Problem: 2.4- A particle of mass m moves in three dimensions under the action of a

central conservative force with potential energy V (r). Then,

(i)- Find the Hamiltonian function in spherical polar coordinates.

(ii)- Show that f is an ignorable coordinate.

(iii)- Obtain Hamilton’s equation of motion.

(iv)- Express the quantity pr =
∂L
∂ṙ

= mṙ or ṙ = pr
m

in term of generalized momenta.

Solution

(i):
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Kinetic energy T =
1

2
m(ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2)

L =
1

2
m(ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2)− V (r)

pr =
∂L

∂ṙ
= mṙ or ṙ =

pr
m

pθ =
∂L

∂θ̇
= mr2θ̇ or θ̇ =

pθ
mr2

pϕ =
∂L

∂ϕ̇
= mr2 sin2 θϕ̇ or ϕ̇ =

pϕ
mr2 sin2 θ

H =
∑
i

piq̇i − L = prṙ + pθθ̇ + pϕϕ̇− L

Substituting the values of ṙ, θ̇ and ϕ̇, we have,

H =
1

2m

[
p2r +

p2θ
r2

+
p2ϕ

r2 sin2 θ

]
+ V (r)

(ii): The coordinates f is not appearing in the Hamiltonian. Hence, it is an ignorable

coordinate.

(iii): Hamilton’s canonical equations will be six in number as there are three general-

ized coordinates. They are,

ṗr =− ∂H

∂r
=

1

mr3

(
p2θ +

p2ϕ
sin2 θ

)
− dV (r)

dr
ṙ =

∂H

∂pr
=
pr
m

ṗθ =− ∂H

∂θ
=

1

mr2
p2ϕ cos θ

sin3 θ
θ̇ =

∂H

∂pθ
=

pθ
mr2

ṗϕ =− ∂H

∂ϕ
= 0 ϕ̇ =

∂H

∂pϕ
=

pϕ
mr2 sin2 θ

(iv):

l2 =m2r4
(
θ̇2 + sin2 θϕ̇2

)
= m2r4

(
p2θ
m2r4

+
sin2 θp2ϕ

m2r4 sin4 θ

)

=p2θ +
p2ϕ

sin2 θ
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Problem: 2.5- Find Lagrange of equation of motion of a simple harmonic oscillator on

which a non-conservative force F◦ sinωt is applied.

Solution

consider a mass m attached to a spring of spring constant k. Suppose at any time t it

is at a distance x from fixed point O. Since system can be completely specified by one

coordinate x so there is only one Lagrange equation. Kinetic and potential energies

are

T =
1

2
mv2 =

1

2
mẋ2 & V =

1

2
kx2

Lagrangian is,

L = T − V =
1

2
mẋ2 − 1

2
kx2

For coordinate x, Lagrange equation is,

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= Q ⇒ d

dx
(mẋ) + kx = F◦ sinωt

⇒ mẍ+ kx = F◦ sinωt ⇒ ẍ+
k

m
x =

F◦

m
sinωt

Problem: 2.6- Lagrangian for motion of a particle in electromagnetic field is

L =
1

2
mẋ2 +Q(ẋ · Aϕ)

Where Q is the particle’s charge, A(x, t) is the magnetic vector potential and ϕ(x, t)

is the electrostatic potential. Find Lagrange equation of motion.

Solution

Here is only one generalized coordinate x, so there is only one equation of motion,

Action is,

S =

∫
Ldt =

∫ [
1

2
mẋ2 +Q(ẋ · A− ϕ)

]
dt −→ (a)

Lagrange equation is,
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d

dt
(mẋ+QA) +Q∇(ϕ− ẋ · A) = 0 −→ (b)

Here derivative with respect to t is along the path, so

dA

dt
=
∂A

∂t
+ (ẋ · ∇)A −→ (c)

Electric field

E = −∇ϕ− ∂A

∂t

So equation (b) becomes,

mẍ = Q[E +∇(ẋ · A)− (ẋ · ∇)A]

Now

ẋ×B = ẋ× (∇× A) = ∇(ẋ · A)− (ẋ · ∇)A

The above equation simplifies to,

ms̈ = Q(E + ẋ×B)
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Chapter 3

Two Body Central Force Problems

SOLVED PROBLEMS
Problem: 3.1- A particle moves in a circular orbit of diameter b in a central force field.

If the center of attraction is on the circumference itself, find the law of force.

Solution

In a central force field, the differential equation of the orbit, is given by,

d2

dθ2

(
1

r

)
+

1

r
= −m

L2
r2F (r) (3.1)

Here, O is the center of force, and A is the position of the particle. the co-ordinates of

the particle are r and q. From the figure

r =b cos θ (3.2)

d

dθ

(
1

r

)
=
d

dθ

(
sec θ

b

)
=

1

b
sec θ tan θ

d2

dθ2

(
1

r

)
=
1

b
(sec θ tan2 θ + sec3 θ) (3.3)

Substituting Eq.(3.3) in Eq.(3.1), we get

1

b
(sec θ tan2 θ + sec3 θ) +

sec θ

b
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= −m

L2
b2 cos2 θF (r) (3.4)

1

b
[sec θ(sec2 θ − 1) + sec3 θ] +

sec θ

b

= −m

L2
b2 cos2 θF (r)

2 sec3 θ

b
=− m

L2
b2 cos2 θF (r)

F (r) =
−2L2 sec5 θ

mb3
=
−2L2b2

mr5
=
K

r5
(3.5)

Where K is a constant.

Problem: 3.2- A spacecraft in a circular orbit of radius rc around the earth was put in

an elliptical orbit by firing a rocket. If the speed of the spacecraft increased by 12.5%

by the sudden firing of the rocket,

(i) What is the equation of the new orbit?

(ii) What is its eccentricity?

(iii) What is the apogee distance?

Solution

Let vc be the speed in the circular orbit. The speed after firing of rocket

v◦ =vc + 0.125vc = 1.125vc

(i)- the equation of orbit is given by,

r =
(1.125)2rc

1 + [(1.125)2 − 1] cos θ
=

1.27rc
1 + 0.27 cos θ

(ii)- Eccentricity

ϵ =

(
vp
v◦

)2

− 1 = (1.125)2 − 1 = 0.27

(iii)- At the apogee, θ = π and r is rmax
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rmax =
1.27rc
1− 0.27

= 1.74rc

Problem: 3.3- Consider scattering of particles by a rigid sphere of radius R and cal-

culate the differential and total cross-sections.

Solution

Since the sphere is rigid, the potential outside the sphere is zero and that inside the

scattering by a rigid sphere. A particle with impact parameter b > R will not be

scattered.If b < R, due to the law of conservation of momentum and energy a particle

incident at an angle a with the normal to the surface of the sphere will be scattered

off on the other side of the normal at the same angle a (see Fig.(1.2))

we know,

σ(ϕ) = − b db

sinϕ dϕ
(3.6)

Now from figure,

sinα =
b

R
and ϕ = π − 2α

α =
π − ϕ

2
or sinα = sin

π − ϕ

2
= cos

ϕ

2

Equating the two expressions for sinα

b = R cos
ϕ

2

Substituting this value of b in Eq.(3.6)

σ(ϕ) = − b

sinϕ

db

dϕ
=
R2

4

Which is independent of f and incident energy.

σT =

∫
4π

σ(Ω)dΩ = 2π

π∫
0

σ(ϕ) sinϕ dϕ
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=2π
R2

4
[− cosϕ]π0 = πR2

Problem: 3.4- Find the law of force if a particle under central force moves along the

curve r = a(1 + cos θ).

Solution

The differential equation of the orbit is

d2

dθ2

(
1

r

)
+

1

r
(3.7)

= −mr
2

L2
F (r) (3.8)

d

dθ

(
1

r

)
=

d

dθ

(
1

a(1 + cos θ)

)
(3.9)

d

dθ

(
1

r

)
=

sin θ

a(1 + cos θ)2
(3.10)

d2

dθ2

(
1

r

)
=

d

dθ

{
sin θ

a(1 + cos θ)2

}
(3.11)

=
cos θ

a(1 + cos θ)2
+

2 sin2 θ

a(1 + cos θ)3

=
a cos θ

a2(1 + cos θ)2
+

2a2(1− cos2 θ)

a3(1 + cos θ)3
(3.12)

=
r − a

r2
+

2a2 − 2(r − a)2

r3

=
r − a

r2
+

−2r2 + 4ar

r3
(3.13)

=
1

r
− a

r2
− 2

r
+

4a

r2

= −1

r
+

3a

r2
(3.14)

Substituting Eq.(3.14) in Eq.(3.8)

−1

r
+

3a

r2
+

1

r
=− mr2

L2
F (r)

F (r) =− 3aL2

mr4

Which is the law of force.
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Problem: 3.5- For circular and parabolic orbits in an attractive 1
r
potential having

the same angular momentum, prove that the speed of the particle at any time in the

parabolic orbit is
√
2 times the speed in circular orbit passing through the same point.

Solution

We know that the solution to equation of law of force is,

1

r
=
mk

l2
[1 + ϵ cos(θ − θ′)]

The speed of a particle in a circular orbit is,

v2c = r2θ̇2 = r2
(

l2

m2r4

)
⇒ vc =

1

mr

In term of k, its equal to

vc =
l

mr
=

√
mrk

mr
=

√
k

mr

The speed of a particle in a parabolic path,

v2p = ṙ2 + r2θ̇2

=

{
d

dt

(
l2

mk(1 + cos θ)

)}2

+ r2θ̇2

v2p = ṙ2 + r2θ̇2 =
l2θ̇

mk(1 + cos θ)2
sin θ + r2θ̇2

= r2θ̇2
(

sin2 θ

(1 + cos θ)2
+ 1

)
v2p = r2θ̇2

(
2 + 2 cos θ

(1 + cos θ)2

)
=

2r2θ̇2

1 + cos θ

Using k = l2

mr
, we have

r =
l2

mk(1 + cos θ)
& θ̇2 =

l2

m2r4

We have
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v2p =
2l2r2mkr

m2r4l2
=

2k

mr

For the speed of parabola, we have

vp =
√
2

√
k

mr

Thus,

vp =
√
2 vc
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Chapter 4

Kinematics of Rigid Body

SOLVED PROBLEMS
Problem: 4.1- A body moves about a point O under no force. The principal moments

of inertia at O being 3A, 5A and 6A. Initially the angular velocity has components

w1 = w, w2 = 0 and w3 = 2 about the corresponding principal axes. Show that at

time t,

ω2 =
3ω√
5
tan

ωt√
5

if

∫
dx

p2 − x2
=

1

p
tanh−1

(
x

p

)
Solution

In the torque-free case, the Euler’s equations are

I1ω̇1 = ω2ω3(I2 − I3) (4.1)

I2ω̇2 = ω1ω3(I3 − I1) (4.2)

I3ω̇3 = ω1ω2(I1 − I2) (4.3)

Replacing the principal moments of inertia I1, I2, I3 by 3A, 5A and 6A, respectively
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3ω̇1 =− ω2ω3 (4.4)

5ω̇2 =3ω3ω1 (4.5)

6ω̇3 =− 2ω1ω2 (4.6)

Multiplying Eq.(4.6) by 3ω1 and Eq.(4.5) by ω2 and adding.

9ω1ω̇1 + 5ω2ω̇2 = 0

Integrating and applying the initial conditions

9ω2
1 + 5ω2

2 =Constant

9ω2
1 + 5ω2

2 =9ω2 (4.7)

Similarly from Eqs.(4.4) and (4.6)

ω2
1 = ω2

3 (4.8)

Using Eqs.(4.8), (4.5) and (4.7), we have

5ω̇2 = 3ω2
1 = 3ω2 − 5ω2

2

3
or ω̇2 =

9ω2 − 5ω2
2

15

Integrating

t =15

∫
dω2

9ω2 − 5ω2
2

= 3

∫
dω2(

9
5

)
ω2 − ω2

2

=

√
5

ω
tanh−1

(√
5ω2

3ω

)

ω2 =
3ω√
5
tanh

(
ωt√
5

)
Problem: 4.2- In the absence of external torque on a body, prove that

(i)- The kinetic energy is constant.

(ii)- The magnitude of the square of the angular momentum (L2) is constant.

Solution

According to Simpler form of Euler’s equations, which are,
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I1ω̇1 = ω2ω3(I2 − I3) (4.9)

I2ω̇2 = ω3ω1(I3 − I1) (4.10)

I3ω̇3 = ω1ω2(I1 − I2) (4.11)

(i)- Multiplying the equation (4.9) by w1, (4.10) by w2 and the equation (4.11) by w3,

and adding, we get

I1ω1ω̇1 + I2ω2ω̇2 + I3ω3ω̇3 =0

1

2

d

dt
[I1ω

2
1 + I2ω

2
2 + I3ω

2
3] =0

The quantity inside the square bracket is kinetic energy 2T , that is

d

dt
(T ) = 0 or T is a constant

(ii)-

L2 =(I1ω1 + I2ω2 + I3ω3)

· (I1ω1 + I2ω2 + I3ω3)

L2 =I21ω
2
1 + I22ω

2
2 + I23ω

2
3

Multiplying the equation (4.9) by I1ω1, equation (4.10) by I2ω2 and the equation (4.11)

by I3ω3 and adding, we get

I21ω1ω̇1 + i22ω2ω̇2 + i23ω3ω̇3 =0

1

2

d

dt
[I21ω

2
1 + I22ω

2
2 + I3

2ω2
3] =0

d

dt
L2 =0

L2 =Constant
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Problem: 4.3- If w3 is the angular velocity of a freely rotating symmetric top about

its symmetry axis, show that the symmetry axis rotates about the space-fixed z-axis

with angular frequency ϕ̇ = (2I1−I3)ω3

I1 cos θ
, where q and f are Euler’s angles.

Solution

According to Euler’s geometrical equations, which are,

ω1 =ωx = ϕ̇ sin θ sinψ + θ̇ cosψ (4.12)

ω2 =ωy = ϕ̇ sin θ cosψ − θ̇ sinψ (4.13)

ω3 =ωz = ϕ̇ cos θ + ψ̇ (4.14)

From the equation Eq.(4.14), we have

ω3 = ϕ̇ cos θ + ψ̇

In the force-free motion of a symmetric top we have seen that the angular velocity

vector w of the top precesses in a cone about the body symmetry axis with an angular

frequency k given by

k =
(I3 − I1)ω3

I1

This angular frequency is the same as ψ̇ which is also directed along the symmetry

axis. Substituting this value of ψ̇ in the expression for w3 and simplifying, we get

ϕ̇ =
(2I1 − I3)ω3

I1 cos θ

Problem: 4.4- Consider a thin rod of length l and mass m pivoted about one end.

calculate the moment of inertia, Find the point at which, if all the masses were con-

centrated, the moment of inertia about that pivot axis would be the same as the real

moment of inertia. The distance from this point to the pivot is called the radius of

gyration.

Solution

The linear density of the rod is
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ρl =
m

l

For the origin at one end of the rod, the moment of inertia is,

I =

∫ l

0

ρlx
2dx =

m

l

l3

3
=
m

3
l2 −→ (a)

If all of the masses were concentrated at the point which is at distance α from the

origin, the moment of inertia would be

I = ma2 −→ (b)

Equating equations (a) and (b), we find

α =
l√
3

This is the radius of gyration.

Problem: 4.5- Solve the Hamilton-Jacobi equation for the system whose Hamiltonian

is given by

H =
p2

2
− µ

q

Solution

The Hamilton-Jacobi equation is,

∂S

∂t
+

1

2m

(
∂S

∂x

)2

+mgx = 0

We assume

S = f(t) + ϕ(q)

Now above equation gives,

∂f

∂t
+

1

2

(
∂ϕ

∂q

)2

− µ

q
= 0
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This equation can be satisfied by writing,

∂f

∂t
=
µ

q
− 1

2

(
∂ϕ

∂q

)2

=
µ

α

Where α is a constant.

f(t) =
µ

α
t,

ϕ(q) =
√

2µα arcsin

√
q

α
+

(
2µq(α− q)

α

) 1
2
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Chapter 5

The Rigid Body Equations of Motion

SOLVED PROBLEMS
Problem: 5.1- A body can rotate freely about the principal axis corresponding to the

principal moment of inertia I3. If it is given a small displacement, show that the

rotation will be oscillatory if I3 is either the largest or the smallest of the three principal

moments of inertia.

Solution

As we have Simpler form of Euler’s equations,

I1ω̇1 = ω2ω3(I2 − I3) (5.1)

I2ω̇2 = ω3ω1(I3 − I1) (5.2)

I3ω̇3 = ω1ω2(I1 − I2) (5.3)

Since the displacement is small, we may take w1 and w2 as small and the product w1w2

may be neglected. From the equation (5.3) we get,

ω̇3 = 0 or ω3 = Constant

From the equation (5.1), we have

ω̈1 =
ω3(I2 − I3)

I1
ω̇2
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Substituting the value of ω̇2 from the equation (5.2)

ω̈1 =

[
(I3 − I2)(I1 − I3)

I1I2
ω2
3

]
ω1

ω̈1 =k
2ω1 k2 = Constant

As ω2
3 and I1I2 are positive constant, the nature of the solution is decided by the

product (I3 − I2)(I1 − I3). If I3 > I1 and I3 > I2 or I3 < I1 and I3 < I2, the equation

reduces to

ω̈1 = −k2ω1

and the solution for w1 will be oscillatory.

On the other hand, if I1 > I3 > I2 or I1 < I3 < I2, the equation becomes

ω̈1 = k2ω1

the solution will be exponentially increasing with time. Similar arguments hold good

for w2 also. Hence, the rotation will be oscillatory if I3 is either the largest or the

smallest of the three principal moments of inertia.

Problem: 5.2- Calculate magnitude and direction of Coriolis acceleration of a rocket

moving with a velocity of 2km/s at 60◦ south latitude.

Solution

For body moving in verticle direction, Coriolis force is,

#»

F = −2mωyżî

For a rocket moving vertically upward at 60◦ south latitude

#»

F = −2m×−ω cos 60◦vî = 2mω cos 60◦vî

Magnitude of Coriolis acceleration is,

acor = 2ωv cos 60◦ = 2× 2π

60× 60× 24
× 2× cos 60◦

⇒ acor = 14.58× 10−5m/s2
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Direction of Coriolis acceleration is towards east.

Problem: 5.3- The trace of a tensor is defined as the sum of the diagonal elements:

tr{I} ≡
∑
k

lkk

Show, by performing a similarity transformation, that the trace is an invariant quantity.

In other words, show that

tr{I} = tr{I ′}

Where {I} is the tensor in one coordinate system and {I ′} is the tensor in a coordinate

system rotated with respect to the first system.

Solution

By definition,

I ′ij =
∑
k,l

λikIklλ
−1
lj

Then;

tr{I} =
∑
i

I ′ii =
∑
i

∑
k,l

λikIklλ
−1
li

=
∑
k,l

Ikl
∑
i

λ−1
li λik

=
∑
k,l

Iklδlk =
∑
k

Ikk

tr{I} = tr{I ′}, As required.
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Problem: 5.4- Calculate the moment of inertia I1,I2 and I3 for a homogenous sphere

of radius R and mass M .

Choose the origin at the center of the sphere.

Solution

Relation between cartesian and spherical coordinates is,

x = r sin θ cosϕ, y = r sin θ cosϕ, z = r cos θ

By definition of the moment of inertia,

Iij =

∫
ρ(r)

[
δij
∑
k

x2k − xixj

]
dv

Now

I33 = ρ

∫
(r2 − z2)dv

= ρ

∫
(r2 − r2 cos2 θ)r2drd(cos θ)dϕ

I33 = ρ

∫ R

0

r4dr

∫ +1

−1

(1− cos2 θ)d(cos θ)

∫ 2π

0

dϕ

= 2πρ
R5

5
· 4
3

The mass of sphere is

M =
4π

3
ρR3

Therefore,

I33 =
2

5
MR2

Since the sphere is symmetrical around the origin, the diagonal elements of inertia are

equal;

I11 = I22 = I33 =
2

5
MR2 −→ (a)

A typical off-diagonal element is
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I12 = ρ

∫
(−xy)dv

= −ρ
∫
r2 sin2 θ sinϕ cosϕr2drd(cos θ)dϕ = 0

Therefore the eigen value equation is∣∣∣∣∣∣∣∣∣∣∣
I11 − I 0 0

0 I22 − I 0

0 0 I33 − I

∣∣∣∣∣∣∣∣∣∣∣
= 0 −→ (b)

From (a) and (b), we have

I1 = I2 = I3 =
2

5
MR2

Problem: 5.5- Calculate the moments of inertia I1,I2 and I3 for a homogenous ellipsoid

of mass M with axes’ length 2a > 2b > 2c.

Solution

The equation of an ellipsoid is

x21
a2

+
x22
b2

+
x23
c2

= 1

It can be written in simple form if we make the following substitutions:

x1 = au, x2 = bv, x3 = cw

The equation of ellipsoid reduces to

u2 + v2 + w2 = 1

This is the equation of a sphere in the (u, v, w) system.

Volume of the ellipsoid is

V =
4

3
πabc
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The rotational inertia with respect to the x3-axis passing through the center of mass

of the ellipsoid (we assume the ellipsoid to be homogenous), is given by

I3 =
M

V

∫
(x21 + x22)dv

=
M

V
abc

∫
(a2u2 + b2v2)dτ

Where dτ being volume element in (u, v, w) system. In order to evaluate this integral,

consider the following equivalent integral in which z = r cos θ:∫
a2z2dv =

∫
a2z2(rdrr sin θdθdϕ)

= a2
∫ 2π

0

dϕ

∫ π

0

cos2 θ sin θdθ

∫ R=1

0

r4dr

= a2 × 2π × 2

3
× 1

5
=

4πa2

15

So ∫
(a2u2 + b2v2)dτ =

4π

15
(a2 + b2)

and I3 =
1

5
M(a2 + b2)

Similarly the other moments of inertia are,

I1 =
1

5
M(b2 + c2), I2 =

1

5
M(a2 + c2)
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Chapter 6

Hamilton’s Equations of Motion

SOLVED PROBLEMS
Problem: 6.1- A system of two degrees of freedom is described by the Hamiltonian

H = q1p1 − q2p2 − aq21 + bq22. Show that F1 = p1−aq1
q2

and F2 = q1q2 are constants of

motion.

Solution

H = q1p1 − q2p2 − aq21 + bq22 (6.1)

F1 =
p1 − aq1

q2
(6.2)

And,

F2 = q1q2 (6.3)

The equations of motion for F1 and F2 are

dF1

dt
= [F1, H] +

∂F1

∂t
dF1

dt
= [F1, H] ∵

∂F1

∂t
= 0 (6.4)

And,
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dF2

dt
= [F2, H] +

∂F2

∂t
dF2

dt
= [F2, H] ∵

∂F2

∂t
= 0 (6.5)

Since,

[F1, H] =
∑
j

[
∂F1

∂qj
.
∂H

∂pj
− ∂F1

∂pj
.
∂H

∂qj

]
or [F1, H] =

∂F1

∂q1
.
∂H

∂p1
− ∂F1

∂p1
.
∂H

∂q1
+
∂F1

∂q2
.
∂H

∂p2
− ∂F1

∂p2
.
∂H

∂q2
(6.6)

Now,

∂F1

∂q1
=

∂

∂q1

[
p1 − aq1

q2

]
∂F1

∂q1
=

1

q2
(0− a)

∂F1

∂q1
= − a

q2

also,
∂F1

∂q2
= −(p1 − aq1)

q22

∂F1

∂p1
=

1

q2
; and

∂F1

∂p2
= 0

∂H

∂q1
= p1 − 2aq1; and

∂H

∂q2
= −p2 + 2bq2

∂H

∂p1
= q1; and

∂H

∂p2
= −q2

Substituting these values in Eq.(6.6) gives

[F1, H] = − a

q2
.q1 −

1

q2
(p1 − 2aq1) +

(
−p1 + aq1)

q22

)
(−q2)− (0)(−p2 + 2bq2)

[F1, H] = − aq1
q2

− p1
q2

+
2aq1
q2

+
p1
q1

− aq1
q2

+ 0

[F1, H] = − 2aq1
q2

− p1
q2

+
2aq1
q2

+
p1
q1

= 0 (6.7)
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From Eq.(6.4), dF1

dt
= [F1, H] = 0. Hence F1 is a constant of motion. Now, F2 = q1q2,

we have

[F2, H] =
[
q1q2, q1p1 − q2p2 − aq21 + bq22

]
[F2, H] = [q1q2, q1p1]− [q1q2, q2p2]− [q1q2, aq

2
1] + [q1q2, bq

2
2]

[F2, H] = q1[q2, p1]− q2[q1, p2]− aq1[q2, q1] + bq2[q1, q2]

[F2, H] = q1[0]− q2[0]− aq1[0] + bq2[0] = 0 (6.8)

From Eq.(6.5), dF2

dt
= [F2, H] = 0. Hence F2 is a constant of motion.

Problem: 6.2- Using the fundamental Poisson brackets find values of α and β for which

the equation Q = qα cos βp, and P = qα sin βp represent a canonical transformation.

Also find a generating function F3 for the transformation for some values of α & β.

Solution

Q = qα cos βp (6.9)

and

P = qα sin βp (6.10)

Now, from Eq.(6.9), we have

∂Q

∂q
= αqα−1 cos βp and

∂Q

∂p
= −qαβ sin βp

And, now from Eq.(6.10), we have

∂P

∂q
= αqα−1 sin βp and

∂P

∂p
= qαβ cos βp

For canonical transformation [Q,P ]q,p = 1, so
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∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q
=1

αqα−1 cos βp.qαβ cos βp− [−qαβ sin βp] .αqα−1 sin βp =1

αqα−1 cos βp.qαβ cos βp+ qαβ sin βp.αqα−1 sin βp =1

αβq2α−1 cos2 βp+ αβq2α−1 sin2 βp =1

αβq2α−1
[
cos2 βp+ sin2 βp

]
=1

αβq2α−1(1) = 1 ∵ cos2 βp+ sin2 βp = 1

αβq2α−1 =1

=⇒ αβ =1 and q2α−1 = q0

=⇒ 2α− 1 =0

α =
1

2

So, β = 1
α

= 1
1/2

= 2, thus for α = 1
2
and β = 2, the transformation is canonical

with transformation equation

Q =
√
q cos 2p (6.11)

P =
√
q sin 2p (6.12)

Now,

pdq − PdQ = pdq −√
q sin 2p

[
√
q (−2 sin 2pdp) + cos 2p

1

2
.
1√
2
dq

]
pdq − PdQ = pdq + 2q sin2 2pdp− 1

2
sin 2p cos 2pdq

pdq − PdQ = pdq + q(1− cos 4p)dp− 1

4
sin 4pdq

pdq − PdQ = pdq + qdp− q cos 4pdp− 1

4
sin 4pdq

pdq − PdQ =(pdq + qdp)− 1

4
(4q cos 4pdp+ sin 4pdq)

pdq − PdQ = d(pq)− 1

4
d (q sin 4p)

pdq − PdQ = d

(
pq − 1

4
q sin 4p

)
pdq − PdQ = dF1

Quanta Publisher 48 Classical Mechanics



Hence the generating function is

dF1 = d

(
pq − 1

4
q sin 4p

)
F1 = pq − 1

4
q sin 4p

∵ F3(p,Q) =F1(q,Q)− q
∂F1

∂q

F3(p,Q) = pq − 1

4
q sin 4p− pq p =

∂F1

∂q

F3(p,Q) = − 1

4
q sin 4p (6.13)

Now, from Eq.(6.11), we have

Q =
√
q cos 2p

=⇒ √
q =Q sec 2p

q =Q2 sec2 2p (6.14)

Substituting Eq.(6.14) into Eq.(6.13) gives

F3(p,Q) = − 1

4
(Q2 sec2 2p) sin 4p

F3(p,Q) = − 1

4

Q2

cos2 2p
.2 sin 2p cos 2p

F3(p,Q) = − 1

2

Q2

cos 2p
sin 2p

F3(p,Q) = − Q2

2

sin 2p

cos 2p

F3(p,Q) = − Q2

2
tan 2p
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Problem: 6.3- Show directly that for a system of one degree of freedom, the transfor-

mation Q = tan−1
(

αq
p

)
and P = αq2

2

(
1 + p2

α2q2

)
is canonical, where α is a constant.

Solution

Q = tan−1

(
αq

p

)
(6.15)

And,

P =
αq2

2

(
1 +

p2

α2q2

)
P =

αq2

2
+
p2

2α
(6.16)

If above given transformation is canonical, then [Q,P ] = 1.

[Q,P ] =
∂Q

∂q
.
∂P

∂p
− ∂Q

∂p
.
∂P

∂q
(6.17)

Now, using Eq.(6.15), we get

∂Q

∂q
=
∂

∂q

[
tan−1

(
αq

p

)]
∂Q

∂q
=

1

1 +
(

αq
p

)2 .αp
also,

∂Q

∂p
=

∂

∂p

[
tan−1

(
αq

p

)]
∂Q

∂p
=

1

1 +
(

αq
p

)2 .(αq).(− 1

p2

)
∂Q

∂p
= − αq

p2
.

1

1 +
(

αq
p

)2
Now, using Eq.(6.16), we get
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∂P

∂q
=
∂

∂q

[
αq2

2
+
p2

2α

]
∂P

∂q
=αq

also,

∂P

∂p
=

∂

∂p

[
αq2

2
+
p2

2α

]
∂P

∂p
=
p

α

Substituting values in Eq.(6.17), we get

[Q,P ] =
1

1 +
(

αq
p

)2 .αp . pα −
(
−αq
p2

)
.

1

1 +
(

αq
p

)2 .αq
[Q,P ] =

1

1 +
(

αq
p

)2 +

(
αq

p

)2

.
1

1 +
(

αq
p

)2
[Q,P ] =

1

1 +
(

αq
p

)2
[
1 +

(
αq

p

)2
]

[Q,P ] = 1

Hence given transformation is canonical.

Problem: 6.4- Consider a function f(q, p) of the coordinates q and p. Use Hamilton’s

equations to show that the time derivative of f can be written as

df

dt
=
∂f

∂q

∂H

∂p
− ∂f

∂p

∂H

∂q

Solution

From f = f(q, p), we have

df

dt
=
∂f

∂p
q̇ +

∂f

∂q
ṗ

Now by using Hamilton’s equations
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df

dt
=
∂f

∂q

∂H

∂p
− ∂f

∂p

∂H

∂q
, As required

Problem: 6.5- Set up Hamilton ins spherical polar coordinates.

Solution

Velocity of a particle in spherical polar coordinates is

#»v = ṙr̂ + rθ̇θ̂ + rϕ̇ sin θϕ̂ ⇒ v2 = ṙ2 + r2θ̇2 + r2ϕ̇2 sin2 θ

Kinetic energy is,

T =
1

2
mv2 =

1

2
m(ṙ2 + r2θ̇2 + r2ϕ̇2 sin2 θ)

Lagrangian is,

L = T − V =
1

2
m(ṙ2 + r2θ̇2 + r2ϕ̇2 sin2 θ)− V (r, θ, ϕ)

Conjugate momentum to coordinate r is,

pr =
∂L

∂ṙ
=

1

2
m(2ṙ) = mṙ ⇒ ṙ =

pr
m

Conjugate momentum to coordinate θ is,

pθ =
∂L

∂θ̇
=

1

2
mr2(2θ̇) = mr2θ̇ ⇒ θ̇ =

pθ
mr2

Conjugate momentum to coordinate ϕ is,

pϕ =
∂L

∂ϕ̇
=

1

2
mr2(2ϕ̇ sin2 θ) = mr2ϕ̇ sin2 θ ⇒ ϕ̇ =

pϕ
mr2 sin2 θ

Hamiltonian of a system is,

H = T + V =
1

2
m(ṙ2 + r2θ̇2 + r2ϕ̇2 sin2 θ) + V (r, θ, ϕ)

⇒ H =
1

2
m

{
p2r
m2

+ r2
p2θ
m2r4

+ r2 sin2 θ

(
p2ϕ

m2r4 sin4 θ

)}
+ V (r, θ, ϕ)

⇒ H =
p2r
2m

+
p2θ

2mr2
+

p2ϕ
2mr2 sin2 θ

+ V (r, θ, ϕ) As required
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Chapter 7

Canonical Transformations

SOLVED PROBLEMS
Problem: 7.1- Find the Poisson bracket of [Lx, Ly], where Lx and Ly are angular

momentum components.

Solution

Angular momentum L =r × P

Lx =ypz − zpy Ly = zpx − xpz Lz = xpy − ypx

[Lx, Ly] =[ypz − zpy, zpx − xpz]

=[ypz, zpx]− [ypz, xpz]− [zpy, zpx] + [zpy, xpz]

Consider the bracket [ypz, xpz].

[ypz, xpz] =[y, x]pzpz + y[pz, x]pz + x[y, pz]pz + xy[pz, pz] = 0

Since all the fundamental brackets involved are zero. In the same way [zpy, zpx] = 0.

Next we shall consider the Poison bracket [ypz, zpx].

[ypz, zpx] =[y, z]pzpx + y[pz, z]px + z[y, px]pz + zy[pz, px]

=0 + y(−1)px + 0 + 0 = −ypx

In the same way
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[zpy, xpz] =x(+1)py = xpy

Substituting all the brackets

[Lx, Ly] =xpy − ypx = Lz

Proceeding on the same lines, we can show that

[Ly, Lz] = Lx and [Lz, Lx] = Ly

Note: In general, [Li, Lj] = Lk, where i, j and k are taken in cyclic order. Let us

introduce a symbol ϵijk with following meaning:

1. ϵijk = 0, if two indices are equal.

ϵiii = ϵiik = ϵiji = 0

2. ϵijk = 1, if i, j, k are distinct and in cyclic order.

ϵijk = ϵjki = ϵkij = 1

3. ϵijk = −1, if i, j, k are distinct and not in cyclic order.

ϵikj = ϵjik = ϵkji = −1

The implication of the above result is that no two components of angular momentum

can simultaneously act as conjugate momenta, since conjugate momenta must obey

the relation [pi, pj] = 0. Only angular momentum component can be chosen as a

generalized coordinate in any particular system of reference.

Problem: 7.2- Show directly that the transformation Q = log
(

1
q
sin p

)
;P = q cot p

is canonical.

Solution

If transformation is canonical, then [Q,P ] = 1.

1 =
∂Q

∂q
.
∂P

∂p
− ∂Q

∂p
.
∂P

∂q
(7.1)

Now,

∂Q

∂q
=
∂

∂q

[
log

(
1

q
sin p

)]
=

1
1
q
sin p

. sin p

(
− 1

q2

)
= −1

q

Also,
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∂Q

∂p
=

∂

∂p

[
log

(
1

q
sin p

)]
=

1
1
q
sin p

.
1

q
cos p = cot p

And,
∂P

∂q
= cot p

Also,

∂P

∂p
= q(− csc2 p) = −q csc2 p

Substituting these values in Eq.(7.1), we get

1 = − 1

q
(−q csc2 p)− (cot p)(cot p)

1 = csc2 p− cot2 p

1 =1 Proved.

Problem: 7.3- The transformation equations between two sets of coordinates are

Q = log (1 +
√
q cos p) (7.2)

and

P = 2 (1 +
√
q cos p)

√
q sin p (7.3)

(a) Show directly from these transformations that Q,P are canonical variables if q

and p are.

(b) Show that the function that generates this transformation F3 = −
(
eQ − 1

)2
tan p.

Solution

pdq − PdQ = pdq − 2 (1 +
√
q cos p)

√
q sin p.d [log (1 +

√
q cos p)]

pdq − PdQ = pdq − 2 (1 +
√
q cos p)

√
q sin p

1

1 +
√
q cos p

.d [1 +
√
q cos p]

pdq − PdQ = pdq − 2
√
q sin p.d [1 +

√
q cos p]
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pdq − PdQ = pdq − 2
√
q sin p

[
−√

q sin pdp+
1

2
√
q
cos pdq

]
pdq − PdQ = pdq + 2q sin2 pdp− sin p cos pdq

pdq − PdQ = pdq + q(1− cos 2p)dp+

(
−1

2
sin 2p

)
dq ∵ 2 sin 2p = 1− cos 2p

or pdq − PdQ = pdq + qdp− q cos 2pdp+

(
−1

2
sin 2p

)
dq

pdq − PdQ = d(pq)− 1

2
d(q sin 2p)

pdq − PdQ = d

(
pq − 1

2
q sin 2p

)
pdq − PdQ = dF1 = exact differential

Hence given transformation is canonical if P,Q are canonical variables. Now we have

dF1 = d

(
pq − 1

2
q sin 2p

)
or F1(q,Q) = pq − 1

2
q sin 2p (7.4)

As,

F3(p,Q) =F1(q,Q)− q
∂F1

∂q

F3(p,Q) =F1 − pq ∵
∂F1

∂q
= p (7.5)

Using Eq.(7.4) into Eq.(7.5) gives

F3(p,Q) = pq − 1

2
q sin 2p− pq

F3(p,Q) = − q

2
sin 2p (7.6)

From Eq.(7.2), we have
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Q = log (1 +
√
q cos p)

or eQ =1 +
√
q cos p

=⇒ √
q cos p = eQ − 1

√
q =

eQ − 1

cos p

q =
(eQ − 1)2

cos2 p
(7.7)

Substituting Eq.(7.7) into Eq.(7.6), we get

F3(p,Q) = −
(eQ−1)2

cos2 p

2
2 sin p cos p ∵ sin 2p = 2 sin p cos p

F3(p,Q) = − (eQ − 1)2

2 cos2 p
2 sin p cos p

F3(p,Q) = − (eQ − 1)2

cos p
sin p

or F3(p,Q) = − (eQ − 1)2
sin p

cos p

F3(p,Q) = − (eQ − 1)2 tan p Proved.

Problem: 7.4- One of the attempts at combining the two sets of Hamilton’s equation

in to one tries to take q and p as forming a complex quantity. Show directly that for a

system of one degree of freedom the transformation Q = q+ ip, P = Q is not canonical

if the Hamiltonian is left unaltered. Can you find another set of coordinates Q′, P ′

that are related to Q,P by a change of scale only and that are canonical?

Solution

Given that

Q = q + ip (7.8)

and

P = Q∗ = q − ip (7.9)

Let us generalize the given transformation a little;

Q = α(q + ip) (7.10)
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and

P = β(q − ip) (7.11)

If α = 1, Eq.(7.10) reduces to Eq.(7.8) and for β = 1, Eq.(7.11) reduces to Eq.(7.9).

Now from Eq.(7.10), we get
Q

α
= q + ip

and from Eq.(7.11), we have
Q

β
= q − ip

Adding these two equations, we get

q + ip+ q − ip =
Q

α
+
Q

β

q + q =
Q

α
+
Q

β

2q =
Q

α
+
Q

β

or q =
1

2

(
Q

α
+
Q

β

)
(7.12)

Also subtracting these two equations, we get

q + ip− q + ip =
Q

α
− Q

β

ip+ ip =
Q

α
− Q

β

2ip =
Q

α
− Q

β

p =
1

2i

(
Q

α
− Q

β

)
(7.13)

The condition for canonical transformation requires that

[Q,P ]q,p = 1 (7.14)

Now,

[Q,P ]q,p =
∂Q

∂q
.
∂P

∂p
− ∂Q

∂p
.
∂P

∂q
(7.15)
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From Eq.(7.10), we get
∂Q

∂q
= α; and

∂Q

∂p
= iα

and from Eq.(7.11), we get

∂P

∂q
= β; and

∂P

∂p
= −iβ

Substituting values in Eqs.(7.14) and (7.15) gives

α(−iβ)− iαβ =1

−2αβ =1

α =
−1

2iβ
(7.16)

For reverse canonical transformation, required condition is [q, p]Q,P = 1 or

1 =
∂q

∂Q
.
∂p

∂P
− ∂q

∂P
.
∂p

∂Q
(7.17)

From Eqs.(7.12) and (7.13) required derivatives are

∂q

∂Q
=

1

2α
∂q

∂P
=

1

2β
∂p

∂Q
=

1

2iα

and
∂p

∂P
= − 1

2iβ

Substituting values in Eq.(7.17) gives

1 =
1

2α

(
− 1

2iβ

)
− 1

2β

(
1

2iα

)
1 = − 1

4iαβ
− 1

4iαβ
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1 = − 1

2iαβ

=⇒ α =
−1

2iβ
(7.18)

Thus for both transformations (forward and reverse)

α =
−1

2iβ
(7.19)

For forward transformation if α = 1, β = 1, which does not satisfy Eq.(7.19), it

means that transformation given by Eqs.(7.8) and (7.9) is not canonical. However,

if α = 1, β = − 1
2i
, Eq.(7.19) is satisfied, hence the transformation Q = q + ip and

P = − 1
2i
(q − ip) = − 1

2i
Q∗ is canonical.

Problem: 7.5- Determine whether the transformation

1. Q1 = q1q2

2. P1 = p1−p2
q2−q1

+ 1

3. Q2 = q1 + q2

4. P2 = q2p2−q1p1
q2−q1

− (q2 + q1)

is canonical.

Solution

p1dq1 − P1dQ1 + p2dq2 − P2dQ2 = p1dq1 −
[
p1 − p2
q2 − q1

+ 1

]
d(q1q2) + p2dq2

−
[
q2p2 − q1p1
q2 − q1

− (q2 + q1)

]
d(q1 + q2)

p1dq1 − P1dQ1 + p2dq2 − P2dQ2 = p1dq1 −
[
p1 − p2
q2 − q1

+ 1

]
(q1dq2 + q2dq1) + p2dq2

−
[
q2p2 − q1p1
q2 − q1

− (q2 + q1)

]
(dq1 + dq2)

p1dq1 − P1dQ1 + p2dq2 − P2dQ2 = p1dq1 −
p1q1
q2 − q1

dq2 +
q1p2
q2 − q1

dq2 − q1dq2

− q2p1
q2 − q1

dq1 − q2dq1 + p2dq2 −
q2p2
q2 − q1

dq1
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+
q1p1
q2 − q1

dq1 + q2dq1 + q1dq1 −
q2p2
q2 − q1

dq2

+
q1p1
q2 − q1

dq2 + q2dq2 + q1dq2

p1dq1 − P1dQ1 + p2dq2 − P2dQ2 = p1dq1 + (q1 − q2)
p2

(q2 − q1)
dq2 − (q2 − q1)

p1
(q2 − q1)

dq1

+ p2dq2 + q1dq1 + q2dq2

p1dq1 − P1dQ1 + p2dq2 − P2dQ2 = p1dq1 − p2dq2 − p1dq1 + p2dq2 + q1dq1 + q2dq2

p1dq1 − P1dQ1 + p2dq2 − P2dQ2 = q1dq1 + q2dq2 ̸= exact differential

so transformation is not canonical.

Problem: 7.6- Show by the use of Poisson brackets that for a one-dimensional harmonic

oscillator; there is a constant of the motion u defined as:

u(q, p, t) = ln(p+ imωq)− iωt, ω =

√
k

m
.

Solution

For a one-dimensional harmonic oscillator having coordinate q and momentum p, the

kinetic and potential energies are given by.

T =
1

2
mv2

T =
p2

2m

and,

V =
kq2

2

V =
mω2q2

2
∵ ω =

√
k

m

The Hamiltonian for one-dimensional harmonic oscillator is
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H =T + V

H =
p2

2m
+
mω2q2

2

H =
1

2m

(
p2 +m2ω2q2

)
(7.20)

Now,

∂H

∂p
=

∂

∂p

[
1

2m

(
p2 +m2ω2q2

)]
∂H

∂p
=

1

2m
(2p)

∂H

∂p
=
p

m

and

∂H

∂q
=
∂

∂q

[
1

2m

(
p2 +m2ω2q2

)]
∂H

∂q
=

1

2m
(0 +m2ω22q)

∂H

∂q
=mω2q

As,

u(q, p, t) = ln(p+ imωq)− iωt

So,
∂u

∂p
=

1

p+ imωq

also,

∂u

∂q
=

1

p+ imωq
(0 + imω)

∂u

∂q
=

imω

p+ imωq

And,
∂u

∂t
= −iω

The equation of motion for u(q, p, t) is given by
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du

dt
= [u,H] +

∂u

∂t

=⇒ du

dt
=
∂u

∂q
.
∂H

∂p
− ∂u

∂p
.
∂H

∂q
+
∂u

∂t
du

dt
=

imω

p+ imωq

( p
m

)
− 1

p+ imωq
(mω2q)− iω

du

dt
=

iωp

p+ imωq
+

i2mω2q

p+ imωq
− iω

du

dt
= iω

[
p

p+ imωq
+

imωq

p+ imωq

]
− iω

du

dt
= iω

[
p+ imωq

p+ imωq

]
− iω

du

dt
= iω(1)− iω

du

dt
= iω − iω

du

dt
=0

Hence u is a constant of the motion.

Problem: 7.7-

(a) For one dimensional system with the Hamiltonian H = p2

2
− 1

2q2
, show that there

is a constant of motion D = pq
2
−Ht.

(b) As a generalization of part (a), for motion in plane with Hamiltonian H =∣∣∣ #»p
∣∣∣n − ar−n, where #»p is the vector of the momenta conjugate to the Cartesian

coordinates, show that there is a constant of the motion D =
#»p . #»r
n

−Ht.

(c) The transformation Q = λq, p = λP is obviously canonical. However the same

transformation with t time dilatation, Q = λq, p = λP, t′ = λ2t is not. Show

that, however, the equations of motion for q and p for the Hamiltonian in part (a)

are invariant under the transformation. The constant of motion D is said to be

associated with this invariance.

Solution

(a) The equation of motion for the quantity D is given by:

dD

dt
= [D,H] +

∂D

∂t
(7.21)
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And,

[D,H]q,p =
∂D

∂q
.
∂H

∂p
− ∂D

∂p
.
∂H

∂q
(7.22)

Since H = p2

2
− 1

2q2
, so

∂H

∂q
= − 1

2

(
− 2

q3

)
∂H

∂q
=

1

q3
(7.23)

And,

∂H

∂p
=

1

2
(2p)

∂H

∂p
= p (7.24)

As D = pq
2
−Ht, so

∂D

∂q
=

p

2
(7.25)

∂D

∂p
=

q

2
(7.26)

and
∂D

∂t
= −H (7.27)

Substituting values from Eqs.(7.23), (7.24), (7.25) and (7.26) into Eq.(7.22) gives

[D,H] =
p

2
.p− q

2

(
1

q3

)
[D,H] =

p2

2
− 1

2q2
(7.28)

Substituting Eqs.(7.27) and (7.28) into Eq.(7.21) gives

dD

dt
=
p2

2
− 1

2q2
+ (−H)

dD

dt
=
p2

2
− 1

2q2
− p2

2
+

1

2q2

dD

dt
=0
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As dD
dt

= 0 =⇒ D is a constant of the motion.

(b) Let

#»p = p1î+ p2ĵ

#»r = q1î+ q2ĵ

So, ∣∣∣ #»r
∣∣∣ = r =

√
q21 + q22

and ∣∣∣ #»p
∣∣∣ = p =

√
p21 + p22

Now as

H =
∣∣∣ #»p
∣∣∣n − ar−n

H =

[√
p21 + p22

]n
− a

[√
q21 + q22

]−n

or H =
[
p21 + p22

]n/2 − a
[
q21 + q22

]−n/2

Now,

∂H

∂qj
= − a

[
−n
2

(
q21 + q22

)−n
2
−1
.2qj

]
∂H

∂qj
=naqj

(
q21 + q22

)−n
2
−1

(7.29)

And

∂H

∂pj
=
n

2

(
p21 + p22

)n
2
−1
.2pj

∂H

∂pj
=npj

(
p21 + p22

)n
2
−1

(7.30)

Also,

#»p · #»r =
(
p1î+ p2ĵ

)
·
(
q1î+ q2ĵ

)
#»p · #»r = p1q1 + p2q2
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Now,

∂ #»p · #»r

∂qj
=

∂

∂qj
(p1q1 + p2q2)

∂ #»p · #»r

∂qj
= pj ∵ j = 1, 2 (7.31)

And,

∂ #»p · #»r

∂pj
=

∂

∂qj
(p1q1 + p2q2)

∂ #»p · #»r

∂pj
= qj ∵ j = 1, 2 (7.32)

Now,

[ #»p · #»r ,H]q, p =
∑

j

[
∂ #»p · #»r

∂qj
.
∂H

∂pj
− ∂ #»p · #»r

∂pj
.
∂H

∂qj

]
(7.33)

Substituting values from Eqs.(7.29), (7.30), (7.31) and (7.32) in Eq.(7.33), we get

[ #»p · #»r ,H]q,p =
∑
j

[
pj

{
npj

(
p21 + p22

)n
2
−1
}
− qj

{
naqj

(
q21 + q22

)−n
2
−1
}]

[ #»p · #»r ,H]q,p =
∑
j

[
np2j

(
p21 + p22

)n
2
−1 − naq2j

(
q21 + q22

)−n
2
−1
]

[ #»p · #»r ,H] =np21
(
p21 + p22

)n
2
−1 − naq21

(
q21 + q22

)−n
2
−1

+ np22
(
p21 + p22

)n
2
−1

− naq22
(
q21 + q22

)−n
2
−1

[ #»p · #»r ,H] =n
(
p21 + p22

)n
2
−1

(p21 + p22)− na
(
q21 + q22

)−n
2
−1

(q21 + q22)

[ #»p · #»r ,H] =n
(
p21 + p22

)n
2 − na

(
q21 + q22

)−n
2

=⇒ 1

n
[ #»p · #»r ,H] =

(
p21 + p22

)n
2 − a

(
q21 + q22

)−n
2 =

∣∣∣ #»p
∣∣∣n − ar−n = H (7.34)

Also,

D =
#»p · #»r

n
−Ht

=⇒ ∂D

∂t
= −H (7.35)

Also,
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[D,H] =

[
#»p · #»r

n
−Ht,H

]
[D,H] =

[
#»p · #»r

n
,H

]
− [H,H]

[D,H] =
1

n
[ #»p · #»r ,H]− t[H,H]

[D,H] =
1

n
[ #»p · #»r ,H]− 0 ∵ [H,H] = 0

[D,H] =
1

n
[ #»p · #»r ,H] (7.36)

The equation of motion for D is given by;

dD

dt
= [D,H] +

∂D

∂t
(7.37)

Substituting values from Eq.(7.35) and (7.36) into Eq.(7.37) gives

dD

dt
=

1

n
[ #»p · #»r ,H]−H

dD

dt
=H −H ∵ Using Eq.(7.34)

dD

dt
=0

As, dD
dt

= 0 so D is constant of the motion.

(c) Since

Q = λq (7.38)

and

λP = p

P =
1

λ
p (7.39)

And,

t′ =λ2t

=⇒ t =
t′

λ2
(7.40)
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By taking q, p and Q,P as functions of time t and t′ respectively we can rewrite

Eqs.(7.38) and (7.39) as follows;

Q(t′) =λq(t)

=⇒ Q(t′) =λq

(
t′

λ2

)
∵ Using Eq.(7.40) (7.41)

and

P (t′) =
1

λ
p(t)

=⇒ P (t′) =
1

λ
p

(
t′

λ2

)
∵ Using Eq.(7.40) (7.42)

As p and q are old parameters, they satisfy Hamilton’s equation.

q̇ =
∂H

∂p
; and ṗ = −∂H

∂q

As, H = p2

2
− 1

2q2
, so

∂H

∂q
=
∂

∂q

(
p2

2
− 1

2q2

)
∂H

∂q
= − 1

2

(
− 2

q3

)
∂H

∂q
=

1

q3

And,

∂H

∂p
=

∂

∂p

(
p2

2
− 1

2q2

)
∂H

∂p
=

1

2
(2p)

∂H

∂p
= p

So, we have

q̇ = p (7.43)

and
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ṗ = − 1

q3
(7.44)

Taking time derivative of Eq.(7.41) gives

dQ(t′)

dt′
=

d

dt′

[
λq

(
t′

λ2

)]
Q̇(t′) =λ

d

dt
q

(
t′

λ2

)
.
1

λ2

Q̇(t′) =λq̇

(
t′

λ2

)
.
1

λ2

Q̇(t′) =
1

λ
q̇

(
t′

λ2

)
Q̇(t′) =

1

λ
p

(
t′

λ2

)
∵ Using Eq.(7.43)

=⇒ Q̇(t′) =P (t′) ∵ Using Eq.(7.42) (7.45)

Similarly taking time derivative of Eq.(7.42) gives

dP (t′)

dt′
=

d

dt′

[
1

λ
p

(
t′

λ2

)]
Ṗ (t′) =

1

λ

d

dt
p

(
t′

λ2

)
.
1

λ2

Ṗ (t′) =
1

λ
ṗ

(
t′

λ2

)
.
1

λ2

Ṗ (t′) =
1

λ3
ṗ

(
t′

λ2

)
Ṗ (t′) =

1

λ3

(
− 1

q3

)(
t′

λ2

)
∵ Using Eq.(7.44)

Ṗ (t′) = − 1

λ3q3
(

t′

λ2

)
Ṗ (t′) = − 1

Q3(t′)
∵ Using Eq.(7.41) (7.46)

So from Eqs.(7.43), (7.44), (7.45) and (7.46) we can write as;
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q̇ = p ; Q̇ = P

and ṗ = − 1

q3
; Ṗ = − 1

Q3

Hence transformation is invariant as both set of equations are the same.

Problem: 7.8-

(a) Prove that the Poisson bracket of two constants of the motion is itself a constant

of the motion even when the constants of motion depend on time explicitly.

(b) Show that if the Hamiltonian and a quantity F are constants of the motion, then

the nth partial derivative of F with respect to t must also be a constants of the

motion.

(c) As an illustration of this result, consider the uniform motion of a free particle of

mass m. The Hamiltonian is certainly conserved and there exists a constant of the

motion, agrees with [H,F ].

Solution

(a)

du

dt
= [u,H] +

∂u

∂t

0 = [u,H] +
∂u

∂t
∵
du

dt
= 0

−[u,H] =
∂u

∂t

or [H, u] =
∂u

∂t
(7.47)

And

dv

dt
= [v,H] +

∂v

∂t

0 = [v,H] +
∂v

∂t
∵
dv

dt
= 0

−[v,H] =
∂v

∂t

or [H, v] =
∂v

∂t
(7.48)

Since
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du

dt
= [u,H] +

∂u

∂t
(7.49)

Now substituting u by [u, v] in Eq.(7.49), gives

d[u, v]

dt
= [[u, v], H] +

∂[u, v]

∂t
d[u, v]

dt
= [[u, v], H] +

[
∂u

∂t
, v

]
+

[
u,
∂v

∂t

]
(7.50)

Substituting Eqs.(7.47) and (7.48) in Eq.(7.50) gives

d[u, v]

dt
= [[u, v], H] + [−[u,H], v] + [u,−[v,H]]

d[u, v]

dt
= [[u, v], H]− [[u,H], v]− [u, [v,H]]

∵ [u,H] = − [H, u]and [u, [v,H]] = −[[v,H], u]

d[u, v]

dt
= [[u, v], H] + [[H, u], v] + [[v,H], u]

or
d[u, v]

dt
= [[u, v], H] + [[v,H], u] + [[H, u], v]

0 = [[u, v], H] + [[v,H], u] + [[H, u], v] ∵
d[u, v]

dt
= 0

Or

[[u, v], H] + [[v,H], u] + [[H, u] = 0

Hence we have [u, v] = constant.

(b)

If F is a constant of motion, then dF
dt

= 0, so that the equation of the motion for F

will become

dF

dt
= [F,H] +

∂F

∂t

or 0 = [F,H] +
∂F

∂t

=⇒ ∂F

∂t
= − [F,H] (7.51)

As H is also a constant of the motion, then dH
dt

= 0, so that the equation of the motion

for H will become
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dH

dt
= [H,H] +

∂H

∂t

or 0 = 0 +
∂H

∂t
∵ [H,H] = 0

=⇒ ∂H

∂t
=0 (7.52)

The equation of motion for ∂nF
∂tn

is given as:

d

dt

[
∂nF

∂tn

]
=

[
∂nF

∂tn
, H

]
+
∂

∂t

[
∂nF

∂tn

]
(7.53)

By taking the nth partial derivative of Eq.(7.51) gives

∂n

∂tn

[
∂F

∂t

]
= − ∂n

∂tn
[F,H]

∂n

∂tn

[
∂F

∂t

]
= −

[
∂nF

∂tn
, H

]
−
[
F,
∂nH

∂tn

]
(7.54)

As from Eq.(7.52), we have

∂H

∂t
=0

=⇒ ∂2H

∂t2
=0

∂3H

∂t3
=0

... =
...

∂nH

∂tn
=0

So that [
F,
∂nH

∂tn

]
= [F, 0][

F,
∂nH

∂tn

]
=0

Now, Eq.(7.54) can be written as
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∂n

∂tn

[
∂F

∂t

]
= −

[
∂nF

∂tn
, H

]
− 0

∂n

∂tn

[
∂F

∂t

]
= −

[
∂nF

∂tn
, H

]
or

∂

∂t

[
∂nF

∂tn

]
= −

[
∂nF

∂tn
, H

]
(7.55)

Substituting Eq.(7.55) into Eq.(7.53) gives

d

dt

[
∂nF

∂tn

]
=

[
∂nF

∂tn
, H

]
−
[
∂nF

∂tn
, H

]
d

dt

[
∂nF

∂tn

]
=0

Hence the nth partial derivative of F = ∂nF
∂tn

with t is also a constant.

(c)

F =x− pt

m

=⇒ ∂F

∂t
= − p

m
(7.56)

Now, equation of motion for ∂F
∂t

is given by

d

dt

[
∂F

∂t

]
=

[
∂F

∂t
,H

]
+
∂

∂t

[
∂F

∂t

]
d

dt

[
∂F

∂t

]
=

[
∂F

∂t
,H

]
+ 0 ∵ Using Eq.(7.56)

d

dt

[
∂F

∂t

]
=

[
∂F

∂t
,H

]
(7.57)

Now, [
∂F

∂t
,H

]
=

∂

∂q

(
∂F

∂t

)
.
∂H

∂p
− ∂

∂p

(
∂F

∂t

)
.
∂H

∂q
(7.58)

Let Hamiltonian for a free particle is H = p2

2m
+mgy, for q = x, we have

∂

∂q

(
∂F

∂t

)
= 0; and

∂

∂p

(
∂F

∂t

)
= − 1

m

Also,
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∂H

∂q
= 0; and

∂H

∂p
=

p

m

Substituting these values in Eq.(7.58) gives[
∂F

∂t
,H

]
=(0).

( p
m

)
−
(
− 1

m

)
(0)[

∂F

∂t
,H

]
=0 + 0[

∂F

∂t
,H

]
=0 (7.59)

Hence from Eqs.(7.57) and (7.59) one can write

d

dt

[
∂F

∂t

]
= 0

So that ∂F
∂t

is a constant of motion.

Problem: 7.9- Show directly that the transformation

1. Q1 = q1

2. P1 = p1 − 2p2

3. Q2 = p2

4. P2 = −2q1 − q2

is canonical and find a generating function.

Solution

−P1dQ1 − P2dQ2 + p1dq1 + p2dq2 = − (p1 − 2p2)dq1 − (−2q1 + q2)dp2 + p1dq1 + p2dq2

−P1dQ1 − P2dQ2 + p1dq1 + p2dq2 = − p1dq1 + 2p2dq1 + 2q1dp2 − q2dp2 + p1dq1 + p2dq2

−P1dQ1 − P2dQ2 + p1dq1 + p2dq2 =2d(q1p2) + d(2p2q2)

−P1dQ1 − P2dQ2 + p1dq1 + p2dq2 = d(2q1p2 + q2p2)

−P1dQ1 − P2dQ2 + p1dq1 + p2dq2 =exact differential

Hence the transformation is canonical. Now,
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dF1 = d(2q1p2 + q2p2)

F1 =2q1p2 + q2p2

F1 = p2(2q1 + q2)

Now,

F3(p1, Q1, p2, Q2) =F1(q1, q2, Q1, Q2)− q1
∂F1

∂q1
− q2

∂F2

∂q2
∵ pj =

∂F1

∂qj
j = 1, 2

F3(p1, Q1, p2, Q2) = 2q1p2 + q2p2 − q1p1 − q2p2

F3(p1, Q1, p2, Q2) = 2q1p2 − q1p1

F3(p1, Q1, p2, Q2) = q1(2p2 − p1)

and F3(p1, Q1, p2, Q2) =Q1(2p2 − p1)

Problem: 7.10- Find under what conditionQ = αp
x
, P = βx2, where α&β are constants,

represents a canonical transformation for a system of one degree of freedom and obtain

a suitable generating function. Apply the transformation to the solution of linear

harmonic oscillator.

Solution

If

Q =
αp

x
(7.60)

and

P = βx2 (7.61)

is canonical, then pdq−PdQ will be total differential or [Q,P ] = 1. So from Eq.(7.60),

we get
∂Q

∂x
= −αp

x2

and,
∂Q

∂p
= −α

x

And from Eq.(7.61), we get
∂P

∂x
= 2βx
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∂P

∂p
= 0

Thus,

[Q,P ] =
∂Q

∂x

∂P

∂p
− ∂Q

∂p

∂P

∂x

1 = − αp

x2
(0)− α

x
(2βx) ∵ [Q,P ] = 1

1 =0− 2αβ

1 = − 2αβ

or α = − 1

2β
(7.62)

Eq.(7.62) gives the required condition. Let β = 1, Eq.(7.62) implies α = −1
2
, so the

transformation equations are Q = − p
2x

and P = x2. Now,

pdx− PdQ = pdx− x2
[
− 1

2x
dp+

(
−p
2

)(
− 1

x2

)
dx

]
pdx− PdQ = pdx− x2

[
− 1

2x
dp+

p

2x2
dx

]
pdx− PdQ = pdx+

x

2
dp− p

2
dx

or pdx− PdQ = pdx+ xdp− x

2
dp− p

2
dx

pdx− PdQ = d(xp)− 1

2
d(xp)

pdx− PdQ = d

[
xp− 1

2
xp

]
pdx− PdQ = d

[
1

2
xp

]
pdx− PdQ = dF1

Now the generating function is;

dF1 = d

[
1

2
xp

]
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=⇒ F1(x,Q) =
1

2
xp

F1 =
1

2
x

[
Qx

α

]
∵ Using Eq.(7.60)

F1 =
1

2
Q
x2

α

F1 =
1

2
Qx2

1

−1/2
∵ α = −1/2

F1 = −Qx2

is the required generating function of first kind.

Problem: 7.11- Show that the direct transformation condition for canonical are given

immediately by the symplectic condition expressed in the form JM = M̃−1J .

Solution

JM =

 0 1

−1 0


∂Q

∂q
∂Q
∂p

∂P
∂q

∂P
∂p



JM =

 ∂P
∂q

∂P
∂p

−∂Q
∂q

−∂Q
∂p

 (7.63)

M̃ =

∂Q
∂q

∂P
∂q

∂Q
∂p

∂P
∂p

 (7.64)

Now,

M̃−1J =

 ∂P
∂p

−∂P
∂q

−∂Q
∂p

−∂Q
∂q


 0 1

−1 0



M̃−1J =

 ∂P
∂q

∂P
∂p

−∂Q
∂q

−∂Q
∂p

 (7.65)
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From Eqs.(7.63) and (7.65), it is clear that

JM = M̃−1J
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