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Chapter 1

Elementary Particles

SOLVED PROBLEMS

Problem: 1.1- Derive Lagrange’s equation of motion using Newton’s laws.

In order to derive Lagrange’s equation, consider case of a single particle. Relation

between cartesian and generalized coordinates in one dimension is,

v =7i(q1, G2, G35 ;Gn, 1)
ox; ox; ox; 8:70 8m
= dr; =—d —d ‘dgs + - —dg,, + —dt
x o Q1+aZQ2+8q3 qs + 8q q 8t
0x; 0x; dx; Ozr;dg;  Ox;
de; =Y —dq; + —dt —
- T2, qﬁat R Zaqj it ot
axz . z 8x, aZL’Z
Z dg;  0q;
Generalized momentum is,
pi=n =7 T-V)=17 =+~ _mifi'?: miTi5— = ML ——
7 0g; 3%’( ) 94; 8%'22 Z 94, ; 9q;



CHAPTER 1. ELEMENTARY PARTICLES

02@- ) @ x;
= % _Zmlxl —|— Z zxza 8 qr + Zmzl’z
oT Oz; | (9 i

-+ &(5)-0rTma; (zx )

Since,

aqj meﬂ 4—2 (Z&cz. 8xz>

So,

d (0N _ o L OT o d (9T 9T
dt ('3 | B 8q] dt 8(]] aq]_ |

For conservative forces,

So above equation becomes,

a(@y.anamagalemy @oem.
d4q; dq; dq; dq; dq; g
d (0T 0

Now potential energy V' is a function of position only, then it is independent of gener-

alized velocities ¢; and we can write;

d (O(T-V) 0
i (M) g v-e

In term of Lagrangian above equation becomes,

d (0L oL
(=)= =9 = 1.2.3. e
dt (aq]) aqj Y j = ? 7n
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Where n is the number of degree of freedom of system. These n second order differential
equations are called Lagrange equations or D’Alembert form of Lagrange equations
for a conservative, holonomic dynamical system

Problem: 1.2- Obtain Lagrangian and equation of motion for a double pendulum,

where the lengths of pendula are [, and l; with corresponding masses m; and ms.

Consider motion of the system in x — y plane. Total number of coordinates are 4 and
total number of constraints are 2 (1 for m; and 1 for my). So number of degrees of
freedom =4 —2 =2, ie. j = 1,2. To obtain equation of motion, we first express
K.E and P.E in terms of position co-ordinates;

For mass my;

x1 =l cos )y — (7)

Y1 :ll sin 91 — (ZZ)
For mass msy;

xo =ly cos Oy + ly cos Oy — (ii7)

Yo =l sin by + Iy sinfy — (iv)
Thus differentiating w.r.t time ¢, we can write as;
i d(z 0,) = —l16,sin by, d(l'e) 1,6, cos 0
21 =—(lycosby) = — sin = —(l;sinfy) = coS
1 i 1 1 101 L, W di 1 1 101 1
l"z = — llél sin 91 — lgég sin 92, yg = 1191 COS 91 + lgég COS 92
The K.E of the system is;
1 2 .2 1 2 .2
T :Tl + TQ = §m1(x1 + yl) + 57712(1’2 + y2) — (U)
1 . . 1 . .
T ==m, (1307 sin” 0, + 1707 cos® ;) + §m2[(l305 sin® 0 + 1503 cos® 0,

2
+ 2[1[2910.2 sin 01 sin Qg) + (Z%Q% COS2 01 + lg@g + 2[1[29192 COS 01 COS Qg)]
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CHAPTER 1. ELEMENTARY PARTICLES

1 . 1 . . ..
T =—mi(E07) + =mo[I20] + 505 + 21115010 (sin 0, sin O, + cos 0 cos 6s)]

2 2
T :§m1 (l%@%) + émgl%H% + §m2l§9§ + m2l1l201«92 [COS(Ql — 82)]
or,

T :%(m1 —my)20% + %mﬁég + mylyly610; cos(0y — 05) — (vi)
Now the potential energy is given by;
V = myghy + maghs — (vid)
For first pendulum Sohy =1+l — 1
hi = (I1 + Iy — 1 cos 01) —> (viii)
For second pendulum She =1 41y — 29
ho =1y + Iy — (I3 cos Oy + 15 cos ) — (ix)

Therefore;

V =myg(ly + 1o — Iy cosby) +mag(ly + Iy — l; cos Oy — Iy cosBy) — ()

The Lagrangian L is defined as;

L=T-V
Lo 1 242 W
or L :§l101(m1 +mg) + §m2l292 + malyl260165 cos(0; — 02)—

mig(ly + lo — Iy cos 01) — mag(ly + I — cos Oy — Iy cos b)) — (x1)

Now, Lagrange’s equation of motion are;

d (0L oL )
( >_( ):O—>(1), asfor j=1,¢;=q¢ =01, and q;=q =0,

dt \ 06, 90,
d (0L oL . . . ;
T (6_02> - (8_62) =0—(2), asfor j=2,¢=q¢=>0, and ¢ =q =0,

Now, differentiating partially Eq,(xi) w.r.t 6; and 0, we get
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oL
00,

oL . -
g =R01(ms + ma) + malilofy cos(fy — 02) — (4)
1

= — mglllgélég sin(91 - 92) - mlgll sin 91 - mggll sin 01 — (3)

Now

a (87) = l%@l (m1 + mg) + m2l1l292 COS(el — 92) — m2l1l292(91 — 92) sin(91 — 92) — (5)
1

Put equations (3) and (5) into Eq. (1)
120, (my + ma) + malylafy cos(0y — 0s) — malylyfy sin(; — 62)(0; — 6y)
+ miglylo0;05 sin(f; — ) + mygly sin 01 + mogly sinf; =0
or
lfél(ml + mg) + mily 1205 cos(6y — 63) — Molila6,0s sin(6; — 65)
+ malyl26,6, sin(f; — 6,) + mglllgég sin(0; — 63) + (mq +ma)glysinf; =0
(mq 4+ my)126; + maolyly0, cos(By — 03) + maly 1262 sin(6y — 6,)

— _(ml + m2)gll Sin 91
This is the result of Eq.(1). Similarly the result of Eq.(2) is

(m1 + mg)l§92 + m2l11291 COS(@l = 92) + mglllgéf sin(01 i 92)

= —mMagls sin Oy

Problem: 1.3- The magnitude of force of attraction between positively charged proton

and negatively charged electron in hydrogen atom is,

Where r, > 11 being radii of two circular orbits.

By how much has the total energy of atom changed is this process?

Quanta Publisher 5 Classical Mechanics



CHAPTER 1. ELEMENTARY PARTICLES

As the electron is revolving in circular orbit, so given force provides necessary cen-

tripetal force i.e.,

Kinetic energy of orbit of radius ry is,
2

K, e
27“1

Kinetic energy of orbit of radius ry is,

2

e
Ky =k—
2 27"2
Change in kinetic energy is,
A 2 1 1 1
AK =Ky — Ky = Ky = h— — K; = k~— = AK = ke’ [—— =
27"2 27’1 2 T2 1
Change in total energy is,
1, /1 1\ [ ke
AE =AK + AU = ~ke* [ = — = +/—idr
2 ro T r?
T2
1 1 1 1™
Lo <_ - _) ket |t
2 ry T rl,,
1 1 1 1 1 1 1 1
= AE =—ke* | — — — ) —ké* | — — = | = —Zke* [ — — =
2 ) 71 T9 T 2 T2 [

This is required change in total energy.

Problem: 1.4- A Lagrangian for a particular physical system can be written as,

k
L' = %(aﬁ + 2biy + i) — 5(@362 + 2bzy + cy?)

Where a, b and c are arbitrary constants but subject to the condition that * — ac # 0.

What are the equations of motion? Examine particularly the two cases a = 0 = ¢ and

Quanta Publisher 6 Classical Mechanics



b =0, ¢ = —a. What is the physical system described by the above Lagrangian?

What is the significance of the condition on the value of b*> — ac ?

There are two degrees of freedom, i.e. x and y so that j = 1,2

k
L :ﬂ(a:i:2 + 2biy + c®) — §(a$2 + 2bzy + cy?) — (1)

2
L/
a@x =0 — S(Qa:v +2by +0) = —k(ax + by) — (2)
L/
aajc :%(2@9‘5 + 20y 4 0) — 0 = m(ai + by) —> (3)

The Lagrange’s equation for L = L’ will become;

d (oL oL . . . .
E( ) =0—(4), asfor j=1, ¢j=qg =12, and ¢j=q ==

oi ) or
= %[m(ax' +by)] = [—k(ax —by)] =0

= m(aZ + bjj) = —k(ax + by) — (5)

The Lagrange’s equation for I = L’ will become;

d (oL oL’ \ ) ) .
( ) =0—(6), asfor j=2, ¢j=¢ =9y, and ¢ ==y

dat\oy) oy

%Z =0— g(O + 2bx 4 2cy) = —k(bx + cy) — (7)
L/

%y — %(o + 2bi + 2¢y) — 0 = m(bd + cy) — (8)

Similarly for y, substituting values in Eq. (6), we obtain

m(bi + cyj) + k(bx + cy) =0
m(bz + cij) = —k(bx + cy) — (9)

These are the equations of motion for a particle of mass m undergoing simple harmonic

motion in two dimensions, as if bound by two springs of spring constant k.
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CHAPTER 1. ELEMENTARY PARTICLES

Let U =ar+by =1 =ar+by = U =ai+0by

& Uy =br +cy = Uy =br+cy = ty=>bx+cy
So that Egs.(5) and (9) can be written as;

and  mily = — kug — (11)
Now for case I, a =0, ¢ =0, so from equations (5) and (9) we have

mby = —kby or my=—ky or y= —ﬁy — (12)
m

and mbi = —kbx or mi=—kxr or iI= T (13)
For case II, when b = 0 and ¢ = —a, equation (5) and (9) will become
mai = —kax = mi=—kxr or I= ~ % © (14)
and —may = —k(—ay) = my=—ky or j= —%y — (15)

In both cases, we have one dimensional harmonic oscillator.
The condition b? — ac # 0 is the condition that the coordinates transformation cannot
be degenerate, i.e.; there are actually two distinct dimensions in which the particle
experiences a restoring force. If we have b> = ac, then we have just a one-dimensional
problem.

Problem: 1.5- Consider the motion of a particle of mass m moving in space. Select-
ing the cylindrical coordinates (r, f,z) as the generalized coordinates, calculate the

generalized force components if a force F' acts on it.
The generalized force corresponding to the coordinate g;

or; ox dy 0z
.:F’i._:Fz_+F__|_FZ_
Q] 8qj 8qj yan an

In cylindrical co-ordinates

Quanta Publisher 8 Classical Mechanics



r=pcos¢ y=psing and z =z

Ox Ox ) Ox
a—p—cosgb a—¢——p8m¢ E_O
oy . dy oy
ap—smgzﬁ 8¢—pcosgz§ 62_0
0z 0z 0z

8_,0_0 8_¢_O &—1

Substituting these values in the expression for generalized force, we have

ox dy 0z
=F,cos¢p+ F,sing = F|
Qp =— Fpsing + Fypcos ¢ = pkFy

Qz :Fz

Where F,, Fy and I, are the components of the force along the increasing direction of
r, f and z

Problem: 1.6- Masses m and m are connected by a light inextensible string which
passes over a pulley of mass 2m and radius a. Write the Lagrangian and find the

acceleration of the system.

The system has only one degree of freedom, and x see fig.(1.1) is taken as the gener-
alized coordinate. The length of the string be | and the center of the pulley is taken

as zero for potential energy
Lo, o Lo
K.E. of the system T =5mE + ma” + Elw
3 ., 1 (i)’
=2 7=
2m:c + 5 (a)
P.E. of the system V = —mgz —2mg(l — z)

3 I
Lagrangian L =-mi® + =1 — mgx + 2mgl

2 2a?
a_L— 3 _|_i y a_L—_
ot m a? . or my

Quanta Publisher 9 Classical Mechanics



CHAPTER 1. ELEMENTARY PARTICLES

l-x
|| 2m
X
.

Fig. 1.1. A Pulley with a string carrying masses m and 2m at its end.

Substitution of these derivatives in Lagrange’s equation gives the equation of motion:

1
(3m—|——2):’c’+mg:0
a

m
Acceleration I = — _mg _ 9

(B3m+ %) 4

Since moment of inertia of the disc= 3 x 2ma® = ma®. Minus sign indicates mass m
moves upward with the acceleration g/4.
Problem: 1.7- Prove that magnitude R of a position vector from an arbitrary origin

for center of mass distribution mq, ms, ms, - -+ ,m,, is given by,
M2R2 . 2,2 1 : 2
=1 2UMET T ) M
i ij

Center of mass is defined as,

—

J

= M2R2 :Zmzmj?z . ?j (11)

i3

Now,

Quanta Publisher 10 Classical Mechanics



g =Tri— Ty
= ?ij —>ij :(?z - ?J) ) (71‘ - ?j)

So equation (1.1) becomes,
2 p2 Lo, oy 1o Lo 2 L,
M*R :Zmzmj 5(7“ + T») — 57"1-]- = Zmimj—(ri + ’f’j) — Zmimj—r--
= M*R? melj2 r? +7° Zm mj2 ” Zm mj2 (2r7) ——Zm m;r Z]
= M*R? :merf B §Zmim]~ T?j
i ij

Hence Proved

Problem: 1.8- Prove that grad S =V.S

We know that,

05, 05 | 9S;
Vs lgia 5t ok

Now,

— a8 - aSA oS . . .
VS~dr—(a—z 8_y o /{;)-(dm—l—dyj—i-dzk)

— 85 (95 85

By definition,
gradS:(()—Sﬁ :>g7’ad5'cﬁ:a—sﬁ~cj7:
on on

= gmdS-cZ: = a—SdrcosH
on

Quanta Publisher 11 Classical Mechanics



CHAPTER 1. ELEMENTARY PARTICLES

Consider two surfaces very close together associated with constant values S; and S

of scalar field respectively.

Now,
n
— =cosf = dn = drcosf
dr
— d
= gmdS-dr:—Sdn:dS
dn

In rectangular coordinates,

s = ﬁdx + ﬁdy + @dz

- Ox oy 0z
Therefore,
— 08 oS a8
dS-dr=—dr+—dy+ ——d 1.
grad S - dr axx—I—ayy—I—azz (1.3)
Comparing equations (1.2) and (1.3), we have
grad$S - dr = VS - dr = gradS = VS

Problem: 1.9- (a)- Show that for a single particle with constant mass, the equation of

motion implies

dl’ -
andaga
t

Where T is kinetic energy, F is applied force vector and ¥ is the velocit6y vector.

(b)- If the mass varies with time, the corresponding equation is,

d

a(mT) =F-7
(a)- Kinetic energy is,
1 2,2 2 2
TzémUQZW;n: :>T:2p—m :>mT:% (1.4)

Quanta Publisher 12 Classical Mechanics



Now,

ar _ 1 (27) dv N
a2 dt
AT AT -

& T T Y _F.
aw e dt v

(b)- Differentiating equation (1.4) with respect to ¢,

d
p (mT)

Problem: 1.10-

—>d_> 1
p p.F

d -

—

p

Q)

As required

Consider scattering of particles by a rigid sphere of radius R and

calculate the differential and total cross-sections.

Since the sphere is rigid, the potential outside the sphere is zero and that

Fig. 1.2. Scattering by a rigid sphere

inside is. Fig.(1.2) illustrates the scattering by a rigid sphere. A particle with impact

parameter b > R will not be scattered.If b < R, due to the law of conservation of

momentum and energy a particle incident at an angle a with the normal to the surface

of the sphere will be scattered off on the other side of the normal at the same angle a

(see Fig.(1.2))

we know,

Now from figure,

(1.5)

Quanta Publisher
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CHAPTER 1. ELEMENTARY PARTICLES

b

sina=—= and ¢=7m— 2«

m™— ¢ . .
or sina = sin
2 2

=y

o =

Equating the two expressions for sin «

_ ¢
b = Rcos 5
Substituting this value of b in Eq.(3.6)
b db R?
o(g) ===
sin ¢ d¢ 4

Which is independent of f and incident energy.

e

op :/J(Q)d!? = QW/J(gb) sin ¢ b

A 0
2

:27TZ[— cos |5 = TR?

Problem: 1.11- A projectile is launched with muzzle velocity of 1800 miles/h at an
angle of 60" with horizontal and lands on same plane. Find,
(a)- Max height reached.
(b)- Time to reach maximum height.
(c)- Total time of flight.
(d)- Range of projectile.

1800 x 1760 x 3
60 x 60

Muzzle velocity =v, = 1800 miles/h = ft/s = 2640 ft/s

Angle of projection =6 = 60°

(a)- Max height reached is,

Quanta Publisher 14 Classical Mechanics



~ vZsin®6 (2460 ft/s)? x (sin60°)

H = = =81 t
2g 2 x 32 ft/s? 81675 1

(b)- Time to reach maximum height is,

vosin® 2460 ft/s x sin60°
g 32 ft/s? B

71.5s

ty, =
(c)- Total time of flight is,
t; =2, =2xT71.5s=143s

(d)- Range of projectile is,

S wZsin20 (2460 ft/s)? x sin 120°
g 32 ft/s?

~ 188614.800
- 1760 x 3

R = 188614.800 ft

males = 35.72 males

Problem: 1.12- Masses of 1, 2 and 3 kg are located at positions 45 + 3k and 2i + 2k
respectively. If their velocities are 7i, —6; and —3]%, find the position and velocity of
the center of mass. Also, find the angular momentum of the system with respect to

the origin.

Radius vector of the center of mass

miri 10+ ] + k) + 2(4] + 3k) + 3(2i + 2k)
P2 ;

(i + 97 + 13k)
6

Velocity of the center of mass

) _;m”’" 1 X Ti+2(—6]) + 3(—30)
M 6
—2i—12j  —i—6)
6 3

The angular momentum vector about the origin

Quanta Publisher 15 Classical Mechanics



CHAPTER 1. ELEMENTARY PARTICLES

L:E i X My;v;
7

—(i+ ]+ k) x Ti+ (4] + 3k) x 2(—6J) + (2i + 2k) x 3(—31)
=77 — Tk + 361 — 18] = 36i — 11 — Tk

Problem: 1.13- Particles of masses 1, 2 and 4 kg move under a force such that their
position vectors at time ¢ are respectively r; = 2 + 412k , ry = 4t1 — l%, and
r3 = (cost)i + (sint)j. Find the angular momentum of the system about the origin
att=1s.

The angular momentum L is given by

L :Z’ﬁ; X mzm
—(2i + 4%k) x 8tk + (41 — k) x 8i + [(cos wt)i + (sinwt)j] X 4n[(— sinwt)] + cos wt)i]
— — 16t) — 8] + 47 (cos® wt + sin® mt)k
(L)—1s = — 247 + 47k

Problem: 1.14- Consider a system of N particles with masses mq, mo, ms---my lo-
cated at cartesian coordinates ry, ry, - - - ry acted upon by forces derivable from a poten-
tial function v(ry, o, -+ ,7ry). Show that Lagrange equations of motion reduce directly

to Newton’s second law.

N
1
The kinetic energyT’ :Z §mi7'"i2

i=1

. 1 .
Lagrangian L =T -V = §Zm’T’2 —V(ry,re, -+ ,rN)

oL __ov. oL _ . . OV
8r,~ N 67} 87"Z - v 87“1‘

Identifying the rectangular co-ordinates as the generalized co-ordinates, Lagrange’s

equation can be written as

Quanta Publisher 16 Classical Mechanics



d (OL\ OL ,
E(m)‘ari:o t=12 N

Substituting the above values

d oL
— (my7 =0 =1,2,---,N
dt(mr)—l—am 1

B 5’7’,-

Which is familiar form of Newton’s second law.
Problem: 1.15- A disc rolling on a horizontal xy-plane is constrained to move such
that the plane of disc is always vertical. Show that the constraint in this example is

non-holonomic

Consider a disk is rolling on horizontal xy-plane constrained to move such that plane
of disc is always vertical. Let a be radius of disk and let ¢ be angular displacement
made by disk and # be angle which the axis of disk makes with z-axis.For angular

displacement,
s = ag = $=ad =0 =ad

The components of velocity are;

vxzvcos<g—9), vy:—vsin<g—9>

= vy = vsin b, vy = —vcosf

Negative sign in v, is due to fact that y-component is along negative y-axis. So we can

write,
T =vsinb, = —vcosb
= i =asinfg, § = —acos o
do _ gdo o
P ar
= dr—asinfdp =0 & dy+acosfdyp =0

Quanta Publisher 17 Classical Mechanics



CHAPTER 1. ELEMENTARY PARTICLES

Neither of above equation can be integrated, so the constraints are non-holonomic.

Quanta Publisher 18 Classical Mechanics



Chapter 2

Variational Principles

SOLVED PROBLEMS

Problem: 2.1- Given a mass spring system consisting of a mass and linear spring of
stiffness k as shown in the Fig.(2.1). Find the equation of motion using Hamiltonian
procedure. Assume that the displacement z is measured from unstressed position of

string.

X

m (00000 /)
111717717777777777777777777777/777/77777/77///

Fig. 2.1. The schematic picture which shows the mass spring system.

Let us find K.E. and P.E., so

T = -ma2
2
L,
and V = 5/{35

Now, the Lagrangian is defined as:



CHAPTER 2. VARIATIONAL PRINCIPLES

L=T-V
1 - 1

L =-ma? — —ka?
2 2

Also, Hamilton’s Principle is defined as:

2}

5/Ldt =0

t1

or /6Ldt =0

Folo 1
/ <§m(5x2 — §k5w2) dt =0

t1
to

/ (%m(Qx')(SI' J %kz(Qx)éx) dt =0

t1
to

/ (midi — kxox)dt =0

t1
to

to
d
or /mx’a(dac)dt— /kxéxdt =0
t1

t1

Evaluating 1% integrate by parts, we have

to
t2 .
— [ daxmadt
t1
t1
to

f o d | ..
/mxa(éx)dt =ma [0x(ty) — dx(ty)] — /5xma:dt

t1

t2

d
/m:i:%(éx)dt =midz
t1

Quanta Publisher 20 Classical Mechanics



/mi%(éw)dt =ma [dz(t1) — dz(t1)] — /5:17midt L 0x(ty) =0 = 0x(ty)

t2

/m:v— dz)dt =mi [0] — /(hmi’dt

/mx— (0x)dt = /5:1:mxdt

Therefore, we have

to to

—/5mmidt— /kx5xdt =0

t1 t1
t2 to

or /5xmjjdt+/k:c(5$dt =0

t1 t1

to
/ (mi + kx) dxdt =0

t1

If an integral is zero, its integrand can also be zero. Therefore,

(m& + kx)ox =0

But, dox #0

So, mi + kx =0
or, ma + kx =0 o F = ma = mi

ma = — kx

Which is the equation of motion. This equation can also be obtained by using Newton’s

law of motion or Lagrange’s equation.
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CHAPTER 2. VARIATIONAL PRINCIPLES

Problem: 2.2- Obtain Hamilton’s equation for a simple pendulum. Hence obtain an

expression for its period.

In simple pendulum we use ¢ as the generalized coordinate. For evaluating potential
energy, the energy corresponding to the mean position is taken as zero. The velocity
of the bob v = 6.

1 .
Kinetic energy T :le262
Potential energy V =mgl(1 — cos0)
1 .
L=T-V= §m12¢92 —mgl(1 — cos @) (2.1)
aL 2 A p@
p9:£:ml9 or HZW
Hamiltonian — H (6, pg) =0py — L
:ng + mgl(l — COS Q) (22)
Hamilton’s equations are;
0=— = — = ——— = —mglsinf 2.3
oo mE P 50 = ~mglsin (2.3)
b Do _ _gsin@
mi? [
Since 6 is small, sin# = ¢ and above equation reduces to
!
b§=—9" (2.4)

The motion is simple harmonic, and the period 7" is given by

T =2m |~ 2.5
g (2.5)

Quanta Publisher 22 Classical Mechanics



Problem: 2.3-

A mass m is suspended by a massless spring of spring constant k. The

suspension point is pulled upwards with constant acceleration ay. Find the Hamiltonian

of the system, Hamilton’s equations of motion and the equation of motion.

Let the vertical be the z-axis. As the acceleration due to gravity is downwards, taking

the net acceleration as (g — ag).

Potential energy

1
Vv :§kz2 +m(g — ag)z

1
Kinetic energy T :§mz’2
1 1
L :§m22 — 5]{722 —m(g — ap)z (2.6)
oL : . D
P, =—— =mz or Z=—
0% m
Hepoiop=2  lpey ( ) (2.7)
=p, 2 — L =2+ —kz*+m(g—ap)z )
p om | 9 g 0
Hamilton’s equation are
OH p.
= === 2.8
o T m (2.8)
oH
Dy = — v —kz—m(g — aop) (2.9)
The equation of motion is
1 1
LV B
z mpz m[ z—m(g — ap)]
mzZ =—kz —m(g — aop) (2.10)

Problem: 2.4-

A particle of mass m moves in three dimensions under the action of a

central conservative force with potential energy V' (r). Then,

(i)- Find the Hamiltonian function in spherical polar coordinates.

ii)- Show that f is an ignorable coordinate.

)

(
(iii)- Obtain Hamilton’s equation of motion.
(iv)- Express the quantity p, =

87‘,:77””’ or r

():

— P
m

in term of generalized momenta.
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CHAPTER 2. VARIATIONAL PRINCIPLES

1 . .
Kinetic energy T' :§m(?*2 + 726% + r? sin® 0¢*)

1 . .
L :§m(7'“2 + 720 + r?sin? 0¢*) — V(1)

oL . . Dr
Dr =7 =mr or r=—
or m
8L 2/ . Po
Do :£ =mr<f or 0= -
oL 229 : Pe
p¢ :a_(b = mr- sin 9¢ or Qb = m

H =Y "pigi — L = p,i + pob) + ps — L

Substituting the values of 7,6 and gﬁ, we have,

2m r2  r2sin?é
(ii): The coordinates f is not appearing in the Hamiltonian. Hence, it is an ignorable
coordinate.
(iii): Hamilton’s canonical equations will be six in number as there are three general-

ized coordinates. They are,

, OH 1 (., 1 dv (r) . OH p,
br=——75-= 3 Do . 92 - r= = —
or mr sin” 0 dr op, —m
sy O _ 1 pheosd ;0
o 00 mr? sin® 6 Opg  mr?
) oOH . OH D
Po=——2-=0 b= =—"

d¢

Opy  mr?sin®é

(iv):

) . 2 sin? Op2
12 =2t (92 1 gin? (9(252) — 2 ( Py I 2 )

m2rt  m2rtsin®6
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Problem: 2.5- Find Lagrange of equation of motion of a simple harmonic oscillator on

which a non-conservative force F, sinwt is applied.

consider a mass m attached to a spring of spring constant k. Suppose at any time ¢ it
is at a distance x from fixed point O. Since system can be completely specified by one
coordinate x so there is only one Lagrange equation. Kinetic and potential energies

are
Lagrangian is,

For coordinate x, Lagrange equation is,

d [(OL OL d _ .
= <%) ~ 5= Q = %(mx) + kx = F,sinwt

= mi+kxr=F,sinwt =T+ —xr = —slnwt
m m

Problem: 2.6- Lagrangian for motion of a particle in electromagnetic field is

(2% %mx'z + Q7+ Ayg)

Where @ is the particle’s charge, A(x,t) is the magnetic vector potential and ¢(z,t)

is the electrostatic potential. Find Lagrange equation of motion.

Here is only one generalized coordinate x, so there is only one equation of motion,

Action is,

S:/Ldt:/Bmg‘c2+Q(x‘-A—¢) d  — (a)

Lagrange equation is,
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CHAPTER 2. VARIATIONAL PRINCIPLES

%(mi+QA)+QV(¢—:t-A):O—>(b)

Here derivative with respect to ¢ is along the path, so

dA 0A
LRI O v AV |
7 BT + (- V)A — (¢
Electric field
0A
B=-vo-

So equation (b) becomes,
mi=QE+V(i-A) —(z-V)A]
Now
txB=2x(VxA)=V(z-A)—(i-V)A
The above equation simplifies to,

ms = Q(E + & X B)
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Chapter 3

Two Body Central Force Problems

SOLVED PROBLEMS

Problem: 3.1- A particle moves in a circular orbit of diameter b in a central force field.

If the center of attraction is on the circumference itself, find the law of force.

In a central force field, the differential equation of the orbit, is given by,

d? (1 1 m
i (‘) Tt (31)

Here, O is the center of force, and A is the position of the particle. the co-ordinates of

the particle are r and ¢. From the figure

r =bcost (3.2)
d (1 d 0 1
i <_> . <Sebc ) = Esec@tane
r
? /1 1
= (;> :g(secetan2 6 + sec’ 0) (3.3)

Substituting Eq.(3.3) in Eq.(3.1), we get

sec
b

1
E(sec 0 tan® 0 + sec’ 0) +



CHAPTER 3. TWO BODY CENTRAL FORCE PROBLEMS

- —%zﬂ cos? OF (r) (3.4)
1 0
—[secO(sec? O — 1) + sec® 4] + >ee
b b
= —%62 cos? OF (r)
2sec? )
sebc =— %bQ cos? OF (1)
—2L%sec®d 2L K
P = — = == = 339)

Where K is a constant.

Problem: 3.2- A spacecraft in a circular orbit of radius r. around the earth was put in
an elliptical orbit by firing a rocket. If the speed of the spacecraft increased by 12.5%
by the sudden firing of the rocket,

(i) What is the equation of the new orbit?
(ii) What is its eccentricity?
(iii) What is the apogee distance?

Let v. be the speed in the circular orbit. The speed after firing of rocket

Vo =0, + 0.125v, = 1.125v0,

(1)- the equation of orbit is given by,

(1.125)2r, 1.27r,

"TiT [(1.125)2 — 1] cos 6 " 1+0.27cosd

(ii)- Eccentricity

2
¢ = (%> —1= (1125~ 1 =027

Vo

(iii)- At the apogee, 0 = 7 and 7 is ryax
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1.27r,

——=le 7y
Tmax =7 o7 — LT

Problem: 3.3- Consider scattering of particles by a rigid sphere of radius R and cal-

culate the differential and total cross-sections.

Since the sphere is rigid, the potential outside the sphere is zero and that inside the
scattering by a rigid sphere. A particle with impact parameter b > R will not be
scattered.If b < R, due to the law of conservation of momentum and energy a particle
incident at an angle a with the normal to the surface of the sphere will be scattered

off on the other side of the normal at the same angle a (see Fig.(1.2))

we know,

== 3.6
o) = ot (3.6
Now from figure,
sinoz—2 and ¢ =m— 2«
i =

T—9 P e ¢

a= or  sina = sin = CcoS —

2 2 2

Equating the two expressions for sin a
¢
b= Rcos =
2

Substituting this value of b in Eq.(3.6)

b db R

_singb% 4

o(¢) =

Which is independent of f and incident energy.

™

o7 :/U(Q)dQ = 27T/0(gb) sin ¢ do

Am 0

Quanta Publisher 29 Classical Mechanics



CHAPTER 3. TWO BODY CENTRAL FORCE PROBLEMS

2

:27TZ[— cos ¢|f = nR?

Problem: 3.4-

curve 7 = a(1 + cosf).

The differential equation of the orbit is

VRS
~_
I

sin 6
a(1+ cosf)?
sin 0

QL

>

o
N

SL
RN
VRS
S|V S|= 3|
~~
I

~_
|

cos

2sin% 0

- a(1l + cosf)? T

acosf

a(1+ cosf)?
2a*(1 — cos®0)

a?(1 + cosf)?

a3(1 + cos 0)3

r—a  2a*—2(r—a)?
slenudu 3
r r
r—a —2r% + dar
- r2 r3
B a 2  da
a rz2 oy 2
B 1 3a
o 2
Substituting Eq.(3.14) in Eq.(3.8)
1 3a 1 mr?
e Wt
roorz2 r L2 (r)
3al?
F = —
(r) mr?

Which is the law of force.

Find the law of force if a particle under central force moves along the

(3.7)

(3.8)

(3.9)
(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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Problem: 3.5-

For circular and parabolic orbits in an attractive % potential having

the same angular momentum, prove that the speed of the particle at any time in the

parabolic orbit is v/2 times the speed in circular orbit passing through the same point.

We know that the solution to equation of law of force is,

_mk

2 [1+ecos(d —6')]

1
r
The speed of a particle in a circular orbit is,

. 12 1
v2:r292:r2( ) =, = —

¢ m2r4

In term of k, its equal to

'Uc:—:

mr m mr

) vmrk 1 4 k
r

The speed of a particle in a parabolic path,
2= i

d 12 Y .4
a {% (mk(l —l—cos@))} ol
120

mk(1 + cos 0)?

2
99 sin” 0

= 41
0 ((1—|—cos€)2+ )

v; — 72 4 20? = sin @ + r26?

s o9s0 [ 2+2cosl 21262
vi =10 =
P (14 cosB)? 1+ cosf
Using k = n%, we have
12 : 12
S S S -
" mk(1 + cos ) m2rt
We have
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CHAPTER 3. TWO BODY CENTRAL FORCE PROBLEMS

o 20%r*mkr 2k

/l) o P
P m2r4[2 mr

|k
vp:\/§ —
mr

vy = \/5110

For the speed of parabola, we have

Thus,
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Chapter 4

Kinematics of Rigid Body

SOLVED PROBLEMS

Problem: 4.1- A body moves about a point O under no force. The principal moments
of inertia at O being 3A, 5A and 6A. Initially the angular velocity has components
w; = w, we = 0 and ws = 2 about the corresponding principal axes. Show that at

time t,

In the torque-free case, the Euler’s equations are

[1@1 = WQCU3([2 — [3) (41)
[2@2 = wlw;g([g — [1) (42)
[30}3 = W1WQ([1 — [2) (43)

Replacing the principal moments of inertia Iy, I, Is by 3A,5A and 6A, respectively



CHAPTER 4. KINEMATICS OF RIGID BODY

3(,2.11 = — Wals3
5@2 :BW3W1

O6ws = — 2wiwy
Multiplying Eq.(4.6) by 3w; and Eq.(4.5) by w, and adding.
Ywiwy + dHwowy = 0
Integrating and applying the initial conditions

9wi + bw; =Constant

9w + bws =9w?
Similarly from Eqs.(4.4) and (4.6)
o
Using Eqgs.(4.8), (4.5) and (4.7), we have

By = Sw% =3w? — or Wy =

3 15

Integrating

Problem: 4.2- In the absence of external torque on a body, prove that

(i)- The kinetic energy is constant.

(ii)- The magnitude of the square of the angular momentum (L?) is constant.

According to Simpler form of Euler’s equations, which are,

Sw? o 9w? = 5w?

(4.8)
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[162.)1 = WQ(,Ug([Q — [3) (49)
[2(,;.)2 = W3w1([3 — [1> (410)
[3&)3 = w1w2(11 — [2> (411)

(i)- Multiplying the equation (4.9) by wy, (4.10) by w9 and the equation (4.11) by ws,
and adding, we get

]1(4}1(,;)1 + IQ(.UQO:)Q + ]3(,<J3d)3 =0

1d
iﬁ[llw% + Igwg + I3W§] =0

The quantity inside the square bracket is kinetic energy 27, that is

d
E(T) =0 or T is a constant
(ii)-
L2 :(Ilwl + IQUJQ + [3(4]3)
. (Ilwl + IQCUQ == [3(4]3)

L? =I{w} + I3w; + Tjw;

Multiplying the equation (4.9) by Iyws, equation (4.10) by I,ws and the equation (4.11)
by I3ws and adding, we get

2 . ) . ) .
I wwy + 15waws + 15waws =0

1d

§E[Ifwf + Igwg + 132w§] =0
d
—L? =0
dt

L? =Constant
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CHAPTER 4. KINEMATICS OF RIGID BODY

Problem: 4.3- If w3 is the angular velocity of a freely rotating symmetric top about
its symmetry axis, show that the symmetry axis rotates about the space-fixed z-axis

with angular frequency ¢ = %

According to Euler’s geometrical equations, which are,

, where ¢ and f are Euler’s angles.

w1 =wy = ¢sinfsiny + 6 cos (4.12)
Wy =Wy = Hsin b cosh — Osiny (4.13)
w3 =w, = ¢cosf + 1 (4.14)

From the equation Eq.(4.14), we have
ws = dcosh +

In the force-free motion of a symmetric top we have seen that the angular velocity
vector w of the top precesses in a cone about the body symmetry axis with an angular

frequency k given by

(13 y Il)w:s

k:
I

This angular frequency is the same as 1) which is also directed along the symmetry

axis. Substituting this value of ¢ in the expression for w; and simplifying, we get

b= (211 — I3)ws
I cosf

Problem: 4.4- Consider a thin rod of length [ and mass m pivoted about one end.
calculate the moment of inertia, Find the point at which, if all the masses were con-
centrated, the moment of inertia about that pivot axis would be the same as the real
moment of inertia. The distance from this point to the pivot is called the radius of

gyration.

The linear density of the rod is
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m
pl:T

For the origin at one end of the rod, the moment of inertia is,

! 3
ml m
/0 TR T (@)

If all of the masses were concentrated at the point which is at distance « from the

origin, the moment of inertia would be
I =ma* — (b)

Equating equations (a) and (b), we find

Sl =

This is the radius of gyration.

Problem: 4.5- Solve the Hamilton-Jacobi equation for the system whose Hamiltonian

is given by
2
g P _n
2 q
The Hamilton-Jacobi equation is,
08 1 (08 2 N 0
— +— | = mgxr =
ot 2m \ Oz I

We assume

S =[t)+¢(q)

Now above equation gives,
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CHAPTER 4. KINEMATICS OF RIGID BODY

This equation can be satisfied by writing,

of _p 1[99\ _p
ot q 2 aq - o
Where « is a constant.
14
f(t) ~t
o(q) :\/QM_Oéarcsin \/E + (M) 2
Q «Q
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Chapter 5

The Rigid Body Equations of Motion

SOLVED PROBLEMS

Problem: 5.1- A body can rotate freely about the principal axis corresponding to the
principal moment of inertia [3. If it is given a small displacement, show that the
rotation will be oscillatory if I3 is either the largest or the smallest of the three principal

moments of inertia.

As we have Simpler form of Euler’s equations,

]1w1 = u}2u)3(]2 - Ig) (51)
]2(,;)2 = u}3u}1(]3 - Il> (52)
]3(,;)3 = wlwg(ll - Ig) (53)

Since the displacement is small, we may take w; and w9 as small and the product w;ws

may be neglected. From the equation (5.3) we get,
ws =0 or ws = Constant

From the equation (5.1), we have



CHAPTER 5. THE RIGID BODY EQUATIONS OF MOTION

Substituting the value of Wy from the equation (5.2)

(I — L) — I3) ,

Wa | W1
I I, ’

W =
& =k%w, k? = Constant
As w? and I,I, are positive constant, the nature of the solution is decided by the

pI‘OdUCt (]3 — Ig)(ll — 13) If Is> 1 and I3 > I, or I3 < I; and I3 < I, the equation

reduces to
(Ijl = —k w1

and the solution for w; will be oscillatory.

On the other hand, if I; > I3 > I, or I} < I3 < I, the equation becomes
wl = k2w1

the solution will be exponentially increasing with time. Similar arguments hold good
for wy also. Hence, the rotation will be oscillatory if I3 is either the largest or the
smallest of the three principal moments of inertia.

Problem: 5.2- Calculate magnitude and direction of Coriolis acceleration of a rocket

moving with a velocity of 2km/s at 60° south latitude.

For body moving in verticle direction, Coriolis force is,
=1 A
F = —2mw,z1
For a rocket moving vertically upward at 60° south latitude
F = —2m x —wcos60°vi = 2mw cos 60°vi
Magnitude of Coriolis acceleration is,
2m

r:2 ° =9 - 2 o
Qo wv cos 60 X 50 % 60 % 24 X 2 X cos 60

= Geor = 14.58 x 1077 m /s
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Direction of Coriolis acceleration is towards east.

Problem: 5.3- The trace of a tensor is defined as the sum of the diagonal elements:

Show, by performing a similarity transformation, that the trace is an invariant quantity.

In other words, show that
tr{l} = tr{l'}

Where {1} is the tensor in one coordinate system and {I'} is the tensor in a coordinate

system rotated with respect to the first system.

By definition,
1= Sl
k,l
Then;

t?“{]} — Z]z/z = ZZAM[MAEI
i ikl
= ZlklZAl_il/\ik
k,l i
= Z[kldlk = Z[kk
k.l k

tr{I} =tr{l'},  As required.
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CHAPTER 5. THE RIGID BODY EQUATIONS OF MOTION

Problem: 5.4- Calculate the moment of inertia I;,I, and I3 for a homogenous sphere

of radius R and mass M.

Choose the origin at the center of the sphere.

Relation between cartesian and spherical coordinates is,
x=rsinfcos o,y =rsinfcoso,z =rcosb

By definition of the moment of inertia,

I; = /p(r) [%sz - :cl-xj] dv
k
Now
I33 = p/(r2 — 2%)dv
=p /(7’2 — 12 cos® 0)r?drd(cos 0)d¢

R +1 27
I33 = p/ r4dr/ (1 — cos®6)d(cos 9)/ do
0 —1 0
R> 4

= Yrp— . =
TP g

The mass of sphere is

47
M= —pR?
3 p
Therefore,
2
[33 — SMR2

Since the sphere is symmetrical around the origin, the diagonal elements of inertia are

equal;
2 2
Ill :]nglggngR — (CL)

A typical off-diagonal element is
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Iy = P/(—l’y)dv

=—p / 72 sin? @ sin ¢ cos ¢ridrd(cos 0)dg = 0
Therefore the eigen value equation is

I —1 0 0

0 0 I3 — 1T

From (a) and (b), we have

2
h:h:h:gMW

Problem: 5.5- Calculate the moments of inertia I,/ and I3 for a homogenous ellipsoid

of mass M with axes’ length 2a > 2b > 2c.

The equation of an ellipsoid is

v | aj a3
2t ta-l!
a b c

It can be written in simple form if we make the following substitutions:
r1 = au, xo = b, T3 = CW
The equation of ellipsoid reduces to
W+t +uwt=1

This is the equation of a sphere in the (u,v,w) system.

Volume of the ellipsoid is

4
V= gwabc

Quanta Publisher 43 Classical Mechanics



CHAPTER 5. THE RIGID BODY EQUATIONS OF MOTION

The rotational inertia with respect to the zz-axis passing through the center of mass

of the ellipsoid (we assume the ellipsoid to be homogenous), is given by

M
=1 / (22 + 22)dv
M

= Vabc/(azfzf + b*v?)dr

Where dr being volume element in (u, v, w) system. In order to evaluate this integral,

consider the following equivalent integral in which z = r cos 0:

/a222dv = /a222(rdrr sin 0dfde)

2 s R=1
=a? / dqﬁ/ cos® fsin «9d8/ ridr
0 0 0

4dra?

15

2 1
=a’X2TX 2 x> =
3 5

So
2 9 2.2 AT 2
/(au e =12 (a4 )
1
and g:ng?+w)

Similarly the other moments of inertia are,

1 1
h:ngMm% QZSMmMm%
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Chapter 6

Hamilton’s Equations of Motion

SOLVED PROBLEMS

Problem: 6.1- A system of two degrees of freedom is described by the Hamiltonian
H = qip1 — qap2 — aq® + bg3. Show that Fy = ’% and Fy, = ¢1qo are constants of

motion.

H = qip1 — ¢2p2 — aq; + bas (6.1)
Fl & pl - a’ql (62)
q2
And,
Fy = qiqo (6.3)

The equations of motion for F} and F3 are

dFy OF,

il G e

dFy B ‘_8F1 B

—t =[P, H] S =0 (6.4)

And,
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dF, 0F,
2 _[F, Hl 4+ =2
i
dF5 or,
il ot (65)
Since,
F;
[Fy, H] = Z {QG_H _ @8_}[]
dg; Op;  Op; g
oFy, OH O0F, OH O0F, OH O0F, OH
or [}y, m) =20 00O OH  OF OH OF oH (6.6)
dq1 Opy Opr Oq dqz Opy Opa Oqy
Now,
oFy :i |:p1_GQ1}
oq oq q2
oF; 1
— =—(0—-a
Iq C]2( )
OF _ _a
dq q2
also,
OFy _ (p1—aq)
0o Q%
(9F1 1 aFl
¥W.slahilt& 0
op1 q2 dpa
oH
o~ =P —2aq;; and —— = —py + 2bgo
Iq g2
oH and oH
_— = . n _ = =
Substituting these values in Eq.(6.6) gives
a 1 —p1+a
[F1, H] = — —.q1 — —(p1 — 2aq1) + (pl—qu)) (—=q2) — (0)(—p2 + 2bg2)
q2 q2 43
2
T P S . TS TR T
q2 q2 q2 q1 q2
2 2
[F,H] = - 220 _Pry 20 PL_ (6.7)
q2 q2 qz a1
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From Eq.(6.4), % = [F1, H] = 0. Hence F] is a constant of motion. Now, Fy = ¢1¢s,

we have

[Fo, H] = [q142, qip1 — qop2 — aqi + bg3)

[Fy, H] =[q1g2, ip1] — (192, G202 — (0192, aqi) + [q142, b3

[Fy, H) = q1[q2, p1] — @2[q1, p2] — aqi[q2, ¢1] + b2 g1, ¢o]

[FQ,H] :ql[O] — QQ[O] — aql[O] + bQQ[O] = 0 (68)
From Eq.(6.5), 42 = [F, H] = 0. Hence F; is a constant of motion.

Problem: 6.2- Using the fundamental Poisson brackets find values of a and  for which

the equation Q = ¢“ cos 8p, and P = ¢“sin p represent a canonical transformation.

Also find a generating function Fj for the transformation for some values of a & 3.

Q = q“ cos Bp
and

P = q¢%sinfp

Now, from Eq.(6.9), we have

0 0

a—cj = aq® 'cosfp and a—g
And, now from Eq.(6.10), we have

or oP

(6.9)

(6.10)

= —q*BsinBp

—_— = aqa’1 sinfp and — = ¢“Bcosfp
dq dp

For canonical transformation [@, P|,, = 1, so
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CHAPTER 6. HAMILTON’S EQUATIONS OF MOTION

QP QP

g™ ! cos Bp.q* B cos Bp — [—q“Bsin Bp] .aq® *sin Bp =
aq™ ! cos Bp.q° B cos Bp + ¢“Bsin Bp.ag® ' sin fp =
B> cos® Bp + afg** sin? fp =1
afg?e! [cos2 Bp + sin? ﬁp} =1

aBg** (1) = " cos? Bp +sin? Bp = 1
Ozﬁq%‘_l —
= af =1 and ¢! =¢°
== 2a—1=
1
a ==
2
So, B = i 1 ﬁ = 2, thus for a = % and § = 2, the transformation is canonical
with transformation equation
Q) = \/qcos2p (6.11)
P = \/qsin2p (6.12)

Now,

pdq — PdQ = pdg — \/qsin2p |/q (—2sin 2pdp) + cos Zp%.%dq
pdq — PdQ) = pdq + 2qsin® 2pdp — % sin 2p cos 2pdq

pdq — PdQ =pdq + q(1 — cos4p)dp — i sin 4pdq

pdq — PdQ) =pdq + qdp — q cos4dpdp — i sin 4pdq

pdq — PdQ = (pdq + qdp) — 411 (4q cos 4pdp + sin 4pdq)

pdq — PdQ =d(pa) ~ 1d (gsindp)

pdq — PdQ) =d (pq — ;lq sin 4p)

pdq — PdQ) =dF,
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Hence the generating function is

1
dFy =d (pq — 14 sin4p)

I .
Fy =pq — qumélp

OF
F3(p, Q) =Fi(q,Q) — qa—l
q
1 OF,
F3(p, Q) =pq— fqsindp —pg  p = ——
r .
F3(p. @) = — jasindp (6.13)
Now, from Eq.(6.11), we have
Q) =+/qcos2p
— /g =Qsec2p
q =Q%*sec*2p (6.14)

Substituting Eq.(6.14) into Eq.(6.13) gives

1
F(p,Q) = — Z(QQ sec? 2p) sin 4p
1@ .
F(p, Q) = — 1cos? 2p'2 sin 2p cos 2p
2
F = — - in 2
3(p, Q) 3 cos 2p sin 2p
Q? sin2p
F: = — =
(. Q) 2 cos2p
Q2
F3(p,Q) = — 7tan2p
Quanta Publisher 49 Classical Mechanics



CHAPTER 6. HAMILTON’S EQUATIONS OF MOTION

Problem: 6.3- Show directly that for

a system of one degree of freedom, the transfor-

. _ 2 2\ . : :
mation ) = tan™* (%) and P = % (1 + ;;—qQ) is canonical, where « is a constant.

Q = tan™! (%) (6.15)
p
And,
2 2
aq p
P = 1
2 ( i a2q2)
2 2
aq p
P=—+"— 1
2 2c0 (6.16)
If above given transformation is canonical, then [Q, P] = 1.
o OP 0Q OP
g Op  Op Oq
Now, using Eq.(6.15), we get
- o (3)
dq q p
0Q 1 e
% ()
(%)
also,
RO
— = — |tan —
dp  Op p
oQ 1 (ag) ( 1)
— = (aq). | ——=
dp ag)’ P
v ()
0Q aq 1
===
")
P
Now, using Eq.(6.16), we get
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also,
or _ 9 [ag®  p*
op  Op| 2 200

0P P

Q

p

Substituting values in Eq.(6.17), we get

ap aq 1
——— |- =
Cag () e NP ()

~s|g

*sL%
/\
Q
Q
v
[\&)
—
+
—
Q
(=}
~—
[\&)

1+

1
e (z)
1
1+<
1
e (z)
@, P] =1

Hence given transformation is canonical.
Problem: 6.4- Consider a function f(g,p) of the coordinates ¢ and p. Use Hamilton’s

equations to show that the time derivative of f can be written as

dif 0foH 0f0H

%_8(] dp  Op Oq

From f = f(q,p), we have
af _of . Of.

dt 8p i 8qp

Now by using Hamilton’s equations
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CHAPTER 6. HAMILTON’S EQUATIONS OF MOTION

a _ g@_H — 8_f(9_H As required

dt Oq op Op g’

Problem: 6.5- Set up Hamilton ins spherical polar coordinates.

Velocity of a particle in spherical polar coordinates is
T =7 +700 + rosinfp = v2 =1 +1%0% + r’¢?sin’ 6
Kinetic energy is,
Lo 1 9 20 292 9
T = gmv” = Em(r + 770" + r°¢” sin” 6)
Lagrangian is,
1 . :
L=T-V = §m(7'“2 +7%0° + r*¢*sin*0) — V(r,0, ¢)

Conjugate momentum to coordinate r is,

oL 1 N

pr = 5x = 5m(2F) = m :>7’“:%
Conjugate momentum to coordinate 6 is,

8L 1 2 H 24 A Do
pezgzgmr(%):mrQ :>0:W
Conjugate momentum to coordinate ¢ is,
oL 1 2/ - 9 7. y Po
= — = —mr?(2¢sin®0) = mr’¢sin® 6 > 0= ——"—

Hamiltonian of a system is,
1 . .
H=T+V = §m(7'"2 + 7202 + r?¢*sin 0) + V (1,0, ¢)

1 P72~ 2 pg 2 .2 pi
= H=-m<-~L +r"——+r*sin“f | ———— +V(r,0,¢)
r

2 m2rtsint @

;. P v;
om T o T arzan?g (r,0,9) s require

Quanta Publisher 52 Classical Mechanics



Chapter 7

Canonical Transformations

SOLVED PROBLEMS

Problem: 7.1- Find the Poisson bracket of [L,,L,], where L, and L, are angular

momentum components.

Angular momentum L=rxP
Ly =yp= — 2py Ly = z2ps — xp. L. = xpy — ypa
[Las Ly) =[yp. — 2py, 2ps — -]
=[ypz, 2pz] = lypz, wp:] — [2py, 202] + 2Dy, 2]
Consider the bracket [yp.,zp,].
lyp=, wp:] =ly, x|p-p> + ylp-, ]p- + =[y, p:lp. + zy[p., p:] = 0

Since all the fundamental brackets involved are zero. In the same way [2p,, zp,| = 0.

Next we shall consider the Poison bracket [yp., z2p.].

[YD2, 2D2) =Y, 2P0z + YDz, 2P + 2[Y, D2|D- + 2Y[D2, D2
=0+ y(—1)p, + 040 = —yp,

In the same way



CHAPTER 7. CANONICAL TRANSFORMATIONS

[2py, 2p:] =x(+1)p, = 1Dy

Substituting all the brackets

[Lacv Ly] =TPy — YPz = Lz

Proceeding on the same lines, we can show that

Note:

Ly, L.]=L, and [L, L,)]=1L,

introduce a symbol ¢;;, with following meaning:

1. €, = 0, if two indices are equal.

€iii = €iik = €iji — 0

2. €jr =1, it 4, j, k are distinct and in cyclic order.

€ijk = €jki = €kij = 1

3. €5 = —1, it ¢, j, k are distinct and not in cyclic order.

€ikj = €jik = €kji = —1

In general, [L;, L;] = Ly, where ¢, j and k are taken in cyclic order. Let us

The implication of the above result is that no two components of angular momentum

can simultaneously act as conjugate momenta, since conjugate momenta must obey

the relation [p;,p;] = 0. Only angular momentum component can be chosen as a

generalized coordinate in any particular system of reference.
Problem: 7.2- Show directly that the transformation () = log (% sin p) P = gcotp

is canonical.

If transformation is canonical, then [@, P] = 1.
P P
1 = 3_@8_ — 3_@8_ (7_1)
dq Op  9Ip Oq
Now,
28 b )] - () -
— =—|log | —=sinp || = — sinp| —— | = —=
dq  Oq q g sinp q> q
Also,
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0Q 0 { (1 . )] 1 1
— = = |log | =sinp || = +—.—cosp = cotp
dp  Op q Ssinp q

And,
orP .
9 cot p
Also,

oP
o — 1 csc’p) = —qesc?p

Substituting these values in Eq.(7.1), we get

1=- é(—qcsczp) — (cot p)(cot p)

1 = csc?p —cot’p

1 =1 Proved.

Problem: 7.3- The transformation equations between two sets of coordinates are

Q = log(1+ /gcosp) (7.2)
and
P = 2(1+ \/qcosp)+/qsinp (7.3)
(a) Show directly from these transformations that @), P are canonical variables if ¢
and p are.
(b) Show that the function that generates this transformation F3 = — (eQ — 1)2 tan p.

pdg — PdQ =pdq — 2 (1+ \/qcosp)+/gsinp.d[log (1 + \/qcosp)]
1
pdg — PdQ =pdq — 2 (1 + \/qcosp) ﬂsinpm.d[l + \/q cos p]

pdg — PdQ =pdq — 2\/qsinp.d[1 + \/qcosp]
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1
pdq — Pd(Q) =pdq — 2\/qsinp [—\/asinpdp + ﬁ cos pdq}
q

pdg — PdQ = pdq + 2q sin® pdp — sin p cos pdq
1
pdq — PdQ) =pdq + q(1 — cos2p)dp + <—§ sin 2p> dqg - 2sin2p = 1 —cos2p
1
or pdq— Pd(Q) =pdq+ qdp — qcos2pdp + (—5 sin Qp) dq
1 .
pdq — PdQ =d(pq) — 5d(gsin2p)

1
pdqg — PdQ) =d (pq — 54 sin 2p>

pdq — PdQ) =dF; = exact differential

Hence given transformation is canonical if P, () are canonical variables. Now we have

1
dFy, =d (pq — 54 sin Qp)

T .
or Fi(q,Q) =pq— 5¢sin 2p (7.4)
As,
OF,
F3(p7 Q) :F1<Q7 Q) - qa_l
q
OF
F(p,Q) =Fi —pg 8—1 = (7.5)
q
Using Eq.(7.4) into Eq.(7.5) gives
1.
F3(p, Q) =pg — 5qsin2p —pq
F(p,Q) = — Tsin2p (7.6)

2

From Eq.(7.2), we have
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Q =log(1+ \/gcosp)
or e? =1+ /gcosp
- qCcosp —e? -1

e? —1
Vi = cosp
(e? — 1)
=— 7.7
1= os?p (7.7)
Substituting Eq.(7.7) into Eq.(7.6), we get
(eQ-1)2
F3(p,Q) = — %QSianOSp "sin2p = 2sinpcosp
QR _1)?
F3(p, Q) = — (ZCOS%Z 2sinpcosp
@ —1)2 |
cosp
or F3(p,Q) = — (e9 = 1)2w
cos p
F3(p,Q) = — (eQ —1)*tanp Proved.

Problem: 7.4- One of the attempts at combining the two sets of Hamilton’s equation
in to one tries to take ¢ and p as forming a complex quantity. Show directly that for a
system of one degree of freedom the transformation () = q¢+ip, P = @ is not canonical
if the Hamiltonian is left unaltered. Can you find another set of coordinates ', P’

that are related to ), P by a change of scale only and that are canonical?

Given that
Q=q+ip (7.8)

and

P=Q =q—ip (7.9)

Let us generalize the given transformation a little;

Q = a(q+ip) (7.10)
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and
P = B(q—ip) (7.11)

If « =1, Eq.(7.10) reduces to Eq.(7.8) and for § = 1, Eq.(7.11) reduces to Eq.(7.9).
Now from Eq.(7.10), we get

Q =q+ip
a
and from Eq.(7.11), we have
@ _ q—1p
g
Adding these two equations, we get
q+ip+q—ip :Q+Q
a B
Q. Q
Q @
2q =—+ —
1/Q @
=—|=4+= 7.12
o a=3(2+9) (7.12)
Also subtracting these two equations, we get
qg+ip—q+ip :Q—9
a  p
AL st 1g
wp+ip = o 7B
a f
1/7Q @
=—|==-= 7.13
pQAaﬁ) (7.13)
The condition for canonical transformation requires that
Q,Plyp =1 (7.14)

Now, 0Q dP  9Q 9P
Q.P), = 229 _0eor (7.15)
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From Eq.(7.10), we get

@ = «; and @ = i

dg op
and from Eq.(7.11), we get

opr oP

- — 5 d =— — —

34 B; an o i3

Substituting values in Eqs.(7.14) and (7.15) gives

al(—if) —iaf =1
—2afp =1
! (7.16)
o =— .
218
For reverse canonical transformation, required condition is [g, plg.p = 1 or
dq 0 dq O
L £ 5 N & (7.17)

9Q 0P~ 0P 9Q

From Eqgs.(7.12) and (7.13) required derivatives are

dg 1
0Q  2a
dg 1
oP " 28
dp 1
0Q  2ix
op 1
and 8_P__%

Substituting values in Eq.(7.17) gives

1= b <_L) 1 (L)
2a \ " 2i3) " 26 \ 2ia
S B
diaff  diaf
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1 =— ,1
2ia 8
-1
=— 1
= a=g 5 (7.18)
Thus for both transformations (forward and reverse)
-1
= — 7.19

For forward transformation if « = 1,8 = 1, which does not satisfy Eq.(7.19), it
means that transformation given by Eqs.(7.8) and (7.9) is not canonical. However,

ifa=170= —%, Eq.(7.19) is satisfied, hence the transformation Q = ¢ + ip and

P = —5(q—1ip) = —Q" is canonical.
Problem: 7.5- Determine whether the transformation
L Q1= qq
2. P =82 +1
3. Q2=q1+¢
4 Py = BEIE — (g + q1)

is canonical.

P1— D2
q2 — 1

prdq — PrdQy + padge — PodQy =pidgr — [ + 1} d(q1q92) + p2dgs

q2p2 — q1P1
- [— — (g2 + ql)] d(q1 + g2)
2 —q1

prdqr — PidQ + padge — PdQs =pidg, — [zl - 2’2
2 — {1

- [w — (g2 + QI):| (dgy + dgo)
q2— 1
P1q1 dgs + q1p2

2
2 — 1 92— q1

+ 1} (q1dgs + qodqr) + padye

prdq — PrdQy + padga — PodQy =pidgr — . dgs — q1dgs

201 q2p2
- dq1 — qodqy + padgs — dq
q2 — q1 q2 — 1
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q1P1 q2p2

+ dg1 + qdqy + q1dgy — dgo

q2 — q1 g — 1

qip

+ = dgs + q2dqs + q1dgo

q2 — q1

b p
pdq — PidQy + padgs — PodQe =prdgy + (g1 — QQ)—ZdQQ — (g2 — 91)—1d6h
(2 — 1) (2 —q1)

+ padge + q1dg1 + g2dge
prdgr — PidQy + pedge — PodQ2 =pidqi — pedqe — prdqy + padqe + qrdgr + go2dge
prdqy — PrdQy + pedgs — PodQy = q1dqy + qodqo # exact differential

so transformation is not canonical.
Problem: 7.6- Show by the use of Poisson brackets that for a one-dimensional harmonic
oscillator; there is a constant of the motion u defined as:
k

u(q,p,t) = In(p +imwq) —iwt, w =/ —.
m

For a one-dimensional harmonic oscillator having coordinate ¢ and momentum p, the

kinetic and potential energies are given by.

1
T =—-—mv
2
2
JLce
2m
and,
kq?
V =—
2

m

The Hamiltonian for one-dimensional harmonic oscillator is

\)
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Now,

and

As,

So,

also,

And,

H=T+V

2 2 2
p mw-q

H =—
QmjL 2

(p* + m*w’q?) (7.20)

2m

u(q, p,t) = In(p +imwq) — iwt

ou 1
op  p+imwq

Ju 1 .

— =—(0+imw)
dq  p+imwq

ou  imw

dq  p+imwq

ou )
— = —jw

ot

The equation of motion for u(q, p,t) is given by
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du ou
q = [u, H] +§

du  Ou OH Ou OH  0Ou
it ~9q o 9p oq ot
d_u _ 1mw <£> B 1

dt  p-+imwq P + 1mwq

2 o
- (mw?q) — iw
mw?q

du wp i2

dt :p—i-iqu p + 1mwq B
du . P 1mwq )
— =w - + - — 1w
dt p+imwq  p+imwg
du . [p + iqu} .

=W |— | —w

w

dt

p + 1mwq
du w(l) — i
— =qw(l) —iw
dt
du .
— =W — W
dt
du
22 -0
dt
Hence w is a constant of the motion.
Problem: 7.7-
(a) For one dimensional system with the Hamiltonian H = %2 Y #, show that there

is a constant of motion D = & — Ht.
(b) As a generalization of part (a), for motion in plane with Hamiltonian H =
" where P is the vector of the momenta conjugate to the Cartesian
2T _ Ht.

p
(c) The transformation @) = Ag,p = AP is obviously canonical. However the same

n
— YA
‘p‘ — ar

coordinates, show that there is a constant of the motion D = £-
transformation with ¢ time dilatation, Q = A¢,p = AP,t' = M2t is not. Show
that, however, the equations of motion for ¢ and p for the Hamiltonian in part (a)
are invariant under the transformation. The constant of motion D is said to be

associated with this invariance.

(a) The equation of motion for the quantity D is given by:

dD oD
— = |D H|+ — 21
dt D, H] ot (7.21)
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And,

2
i —p _ 1
Since H = & 542> 5O

And,

As D = B — Ht, so

and

oD 0H 0D 0H

oH _ _1(_ 2
oqg 2 q°
oOH 1
- 2
0 P (7.23)
oH 1
o 2 (2p)
OH
oD p
oD q
- 1 .2
o 5 (7.26)
oD
— = H (7.27)

p
D H =— — 7.28
Substituting Eqs.(7.27) and (7.28) into Eq.(7.21) gives
dD  p? 1
= _F - 4(_g
dt 2 2¢? +(=H)
aD p? 1 p? n 1
a2 22 2 2¢?
dD
|
dt
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As % = 0 = D is a constant of the motion.

(b) Let
P = pli —|—ij
T = Q1z+CI25
So,
Pl =r= e ta
and
‘?‘ =p=\/pi+13
Now as
H :‘f)’ —ar "
H = {\/p%p%} —a {\/Q%Jrq%}
2 —n/2
ov H=[p2+p2]"" —alg+a3] "
Now,
8H n _n_q
e =—a [‘5 (¢i+43) ® -2%‘]
OH Snq
Do, ag; (¢f +a3) ® (7.29)
qj
And
OH n, 4, oy 21
gt .
o, 2 (0} +p3) D,
OH 9 . o\2-1
apj J( 1 2) ( )
Also,
p-T = (291g +p2j> : (611% + Q2j)
DT =piqi + pago
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Now,

And,

Now,

77

—

9
= 8qj pP1iqa

o,
- aq] pl(h

7, QP_ZJ{

+ Pagq2)

+ Pa2gq2)

0q;

op - _’8H op -

= 1,2 (7.31)
= 1,2 (7.32)
OH

8%} (7.33)

Substituting values from Eqs.(7.29), (7.30), (7.31) and (7.32) in Eq.(7.33), we get

- — 21 —2-1
B 7 Hlop = > o {s (2 +98)* '} — g {mag; (a3 + )]
J
- — 2-1 —2-1
77 Hlyp = [npf- (0 +p5)* —nag; (¢i +¢3) * }
J
- - 2-1 -1 Lo
[P 7. H] =np} (07 +p3)° —naq; (¢ +¢3) > +nps (p7 +p3)°
—nags (¢ +q) °
- - 21 -1
BT H) =n (0t +p3)° (i +p3) —na(@+a) 2 (@ +a3)
(B -7 H] =n(pi+p3)* —na(q+q)*
1 - — 5 -5 —|" —-n
— [P TH] = (i) —ala+a) :(p —ar™ =H  (7.34)
Also,
p=2""_p
n
oD
Also,
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D, H] = {p —Ht,H}
n
D, H] = {p H} —[H, H]
n
1
n
1 - -
1 —> -
[D,H] =—[p -7, H] (7.36)
The equation of motion for D is given by;
dD oD
D, H|+ 7.37
dt = | I+ ot ( )
Substituting values from Eq.(7.35) and (7.36) into Eq.(7.37) gives
dD 1
— =P T, H]
dD
dD
— =0
dt
As, 42 “f = 0so D is constant of the motion.
(c) Since
Q =X\ (7.38)
and
AP =p
p 1 (7.39)
= AI) .
And,
=Nt
t/
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By taking ¢,p and @, P as functions of time ¢ and t' respectively we can rewrite
Eqgs.(7.38) and (7.39) as follows;

Q) =Aa(t)
— Q) =)g (;—;) -+ Using Eq.(7.40) (7.41)
and
P() =30(0)
— P = %p (%) .+ Using Eq.(7.40) (7.42)

As p and ¢ are old parameters, they satisfy Hamilton’s equation.

o _ 0 (p* 1
dqg  Oqg\ 2 2¢

oH 1 2
dqg 2 q3
o _ 1
dq ¢
And,
OH 0 (p? 1
op  Op\2 2¢2
0OH
)
o 5(2p)
o
dp —P
So, we have
q¢g=p (7.43)

and
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p=——
q3

Taking time derivative of Eq.(7.41) gives

Similarly taking time derivative of Eq.(7.42) gives

Q) d

d t

t/
i dp Pq (;)]

1
By

art) _d [1 (1
- dr | 3P\

Looo1d [t 1
=350 () w

oo 1 () 1
AW (A2> Py
oo 1 (¥
P(t)zﬁp<ﬁ)

- ()

MO = g
"0 = - o

t/
®)

(7.44)
" Using Eq.(7.43)
-+ Using Eq.(7.42) (7.45)
*.» Using Eq.(7.44)
*.» Using Eq.(7.41) (7.46)

So from Eqs.(7.43), (7.44), (7.45) and (7.46) we can write as;
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g=p ; Q=P

1 : 1
and p = — = ; P:—@

P

Hence transformation is invariant as both set of equations are the same.

Problem: 7.8-

(a) Prove that the Poisson bracket of two constants of the motion is itself a constant
of the motion even when the constants of motion depend on time explicitly.

(b) Show that if the Hamiltonian and a quantity F' are constants of the motion, then
the nth partial derivative of ' with respect to ¢t must also be a constants of the
motion.

(c) As an illustration of this result, consider the uniform motion of a free particle of
mass m. The Hamiltonian is certainly conserved and there exists a constant of the

motion, agrees with [H, F.

Solution|
(a)

% =[u, H] + %
O:[;L,H]nt% "'%:0
~lnH) =5
or [H,u] :% (7.47)
And
2—1} = v, H] + %
0 = [;J, H + % Z—z — 0
v H] =
or [H,v] :% (7.48)
Since

Quanta Publisher 70 Classical Mechanics



— = [u, H| + — (7.49)

Now substituting u by [u,v] in Eq.(7.49), gives

dlu,v] Olu, v]
d[u, v] ou v
s [, v], H] + [E’U} + {u, E} (7.50)

Substituting Eqs.(7.47) and (7.48) in Eq.(7.50) gives

dlu,v]
dt —[[U,U],H]+[—[U,H],U]+[u,—[U,HH
UL {0, 1)~ [, H),0] — Lo, [, ]
o u, H = — [H,u]and [u, [v, H]] = —[[v, H], u]
dlu,v]
80 o], )+ (0, 0) 4 (0 ). o
dlu,v]
or —— = [[u,v], H] + [[v, H], u] + [[H, u], v]
0 =[[u, ], H] + [[v, H], ] + [H,u,v] " d[Z;“] ~0
Or
([u, v], H] + [[v, H], u] + [[H,u] =
Hence we have [u,v] = constant.
(b)
If F'is a constant of motion, then % = 0, so that the equation of the motion for F'
will become
dF oF
% = [F, H] + E
or 0 =[F, H|+ %—f
OF
il [F, H] (7.51)

As H is also a constant of the motion, then = 0, so that the equation of the motion

dt
for H will become
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dH OH
- _[H. Hl+ ——
i~
oH
0 =0+ —
or + BN
= of =0
o
The equation of motion for %HTf is given as:

d [O"F] [o"F il + a9
dt | otm| | ot ot
By taking the nth partial derivative of Eq.(7.51) gives

o [OF o
ot [E} =~ gm
o [or] _ _[oF
otr | ot o’
As from Eq.(7.52), we have

oH
ot
0’ H
o
0*H
o

onH
ot

So that

[F, aa%ﬂ =[F,0]

o H
[F, W} =0

Now, Eq.(7.54) can be written as

u) |

[H,H] =0

(7.52)
o F
815”} (7.53)
onH
W} (7.54)
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811

otn

an

otn

0

or —

ot

ory _ _[F g1
ot| ot
or) _ _[oF
ot| ot
O"F] [O"F ]
= — | = H .
ot | ot (7.55)

Substituting Eq.(7.55) into Eq.(7.53) gives

d [0"F O"F O"F
— =|—H|-|—,H
dt [015”} {atn’ ] {875"’ ]
d [0"F
— =0
dkd
Hence the nth partial derivative of F' = %Zf with ¢ is also a constant.
(c)
t
F=z 2
m
oF D
Now, equation of motion for %—f is given by
d[oF] _[OF 1 0 [oF
di | ot] — |ot’ ot | ot
d [OF] [OF ]
— | = —, H *.» Using Eq.(7.
it | or | ot _+O . Using Eq.(7.56)
d [OF] [OF |
— | = —, H .
e | ot | | ot’ (7.57)
Now,
0 (0OF\ O0H 0 (0F\ OH
—H| === ———= = | — (7.58)
ot Oq \ Ot Jdp Op \ Ot dq
Let Hamiltonian for a free particle is H = % + mgy, for ¢ = x, we have
oF o (0F 1
~ (=) = o d — (2= ) = ——
aq(at> o ap<at) m
Also,
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0H
dq
Substituting these values in Eq.(7.58) gives

H
and 8—22

’ op m

[OF ] P 1

G #) =0 (5) - () ©

S

| =00

S

| =0 (7.59)

Hence from Eqs.(7.57) and (7.59) one can write

a[or) _
dt | ot |

So that %—f is a constant of motion.

Problem: 7.9- Show directly that the transformation
L Qi =aq
2. Py = p1—2p
3. Q2 = pa
4. Py = =2q1 — ¢

is canonical and find a generating function.

—PdQ1 — PdQ2 + p1dqs + padge — (p1 — 2p2)dqr — (—2q1 + q2)dps + prdqs + p2dye

—P1dQy — PodQs + p1dqi + padgo
—P1dQy — PodQs + p1dqi + padgo
—P1dQy — PodQs + p1dqi + padgo
—P1dQy — PodQs + p1dqi + padgo

= — pidqr + 2p2dgr + 2q1dps — qadps + prdqi + padgs
=2d(q1p2) + d(2p2q2)
=d(2q1p2 + q2p2)

= exact differential

Hence the transformation is canonical. Now,
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dFy =d(2q:1p2 + q2p2)
Fy =2q1p2 + qopo
Fy =p2(21 + ¢2)

Now,
Fs(p1, Q1,p2, Q2) = Fi(q1, g2, Q1, Q2) —Chg—f;l —Q2g—§22 VP = (Z—];l J =12
Fs(p1, Q1,p2, Q2) =2q1p2 + G2p2 — q1p1 — G2p2
Fs(p1, Q1,p2, Q2) =2q1p2 — 1p1
Fs(p1, Q1,p2, Q2) =q1(2p2 — p1)
and  F3(p1, Q1,p2, Q2) = Q1(2p2 — p1)

Problem: 7.10- Find under what condition Q) = <%, P = Bx?, where a3 are constants,
represents a canonical transformation for a system of one degree of freedom and obtain
a suitable generating function. Apply the transformation to the solution of linear

harmonic oscillator.

If
_ap
Q= (7.60)
and
P = Ba? (7.61)

is canonical, then pdg— Pd@ will be total differential or [@Q), P] = 1. So from Eq.(7.60),

we get

0Q _ _op

or 2
and,

Q _ «a

op
And from Eq.(7.61), we get

oprP
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or

— =0
dp
Thus,
0QoP 0QOJOP
pl -2 <7
@, 7] Ox Op  Op Ox
ap - .. _
1 =-—(0)-—(262) SQ,P =1
1 =0-2ap
1 = —2ap
Fa— - (7.62)
or a = % )
Eq.(7.62) gives the required condition. Let 8 = 1, Eq.(7.62) implies &« = —3, so the
transformation equations are () = —4- and P = z%. Now,
1 1
pdr — PdQ = pdv — 1* | ——dp + (—E> —— | dx
2x 2 14
2 1 P
pdx — PdQ) =pdx — x° | ——dp + —dx
2x 222

pdz — PdQ = pdz + gdp " gdx

or pdxr — PdQ) =pdx + xdp — gdp — gda:
pde = PAQ =d(xp) ~ 5d(ap)
pdxr — PdQ =d {xp — %xp]
pdxr — PdQ =d Bxp}

pdx — PdQ) =dF;

Now the generating function is;

1
dFy =d [§xp]
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|
=
=
n

" Using Eq.(7.60)

=
Il
N[N~ N~ DN
53
1
O
> [§
—_

i
B =50—
(0%
1
P =-Qx*—— o= —1/2
1 Q$_1/2 e’ /
Flz—QQTQ

is the required generating function of first kind.
Problem: 7.11- Show that the direct transformation condition for canonical are given

immediately by the symplectic condition expressed in the form JM = M-1J.

| 00 9
ar= | e
oP 9P
I I e
[ op op
JM = 8;@ a;’Q (7.63)
| 09¢ op
0Q op
M = j; o4 (7.64)
oP
b op
Now,
oP oP
M_lJ: 6_27 _a_q O 1
oQ oQ
—% “a) L7100
S
Mg = asQ a;’Q (7.65)
o op]
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From Eqs.(7.63) and (7.65), it is clear that

JM = M~1J
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