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Chapter 1

Introduction to Plasma

SOLVED PROBLEMS
Problem: 1.1- Compute λD and ND for the following cases: (a) A glow discharge with

n = 1016 m−3, kTe = 2eV . (b) The earth ionosphere with n = 1012 m−3, kTe = 0.1eV .

(c) A θ-pinch with n = 1023 m−3, kTe = 800eV .

Solution

(a)

n =1016 m−3

kTe =2eV

λD =?

ND =?

As, we know that

λD =7430

√
kTe

n

λD =7430

√
2

1016

λD =7430× 1.41× 10−8

λD =1.04× 10−4 m



CHAPTER 1. INTRODUCTION TO PLASMA

and also, we know that

ND =n
4

3
πλ3

D

ND =1016
4

3
× 3.14× (1.04× 10−4)3 ⇒ ND = 4.7× 104

(b)

λD =7430

√
kTe

n

λD =7430

√
0.1

1012

λD =7430× 0.32× 10−6

λD =2377.6× 10−6

λD =2.4× 10−3 m

and also, we know that

ND =n
4

3
πλ3

D

ND =1012
4

3
× 3.14× (2.4× 10−3)3

ND =5.8× 104

(c)

λD =7430

√
kTe

n

λD =7430

√
800

1023

λD =7430× 8.9× 10−11

λD =66127× 10−11

λD =6.6× 10−7 m
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and also, we know that

ND =n
4

3
πλ3

D

ND =1023
4

3
× 3.14× (6.6× 10−7)3

ND =1.2× 105

Problem: 1.2- Derive the constant A for normalized one-dimensional Maxwellion dis-

tribution

f̂(u) = Ae(−
mu2

2kT
)

such that
∞∫

−∞
f̂(u)du = 1.

Solution

The one-dimensional Max-Well distribution is given by

f (u) = A exp

(−1
2
mu2

kT

)
By calculating the average kinetic energy must know the value of velocity and number

of particles or density n

n =

∞∫
−∞

f (u) du

Now putting the value of f (u), we get

n =

∞∫
−∞

A exp

(−1
2
mu2

kT

)
du

n2 =

∞∫
−∞

|f (u) du|
2

n2 = A2

∞∫
−∞

∣∣∣∣e− 1
2mu2

kT du

∣∣∣∣
2

(1.1)

Let,
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CHAPTER 1. INTRODUCTION TO PLASMA

x =

√
m

2kT
u

dx =

√
m

2kT
du

du =

√
2kT

m
dx

and
∞∫

−∞

e−x2

dx =
√
π

Now from Eq.(1.1), we get

n2 =A2

∞∫
−∞

∣∣∣∣∣e−x2

√
2kT

m
dx

∣∣∣∣∣
2

n2 =A2

(
2kT

m

) 1
2
×2

∞∫
−∞

∣∣∣e−x2

dx
∣∣∣2

n2 =A2

(
2kT

m

)(√
π
)2

n2 =A2

(
2kT

m

)
π

A2 =n2
( m

2πkT

)

√
A2 =

√
n2
( m

2πkT

)
A =n

( m

2πkT

) 1
2

This is the normalization constant and the equation shows that particles are in one

dimension.
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Problem: 1.3- A distant galaxy contains a cloud of protons and antiprotons, each with

density n = 106 m−3 and temperature 100 K. What is the Debye length.

Solution

n =106 m−3

T =100 K

λD =?

As, we know that

λD =

√
8.85× 10−12 × 1.38× 10−23 × 100

106 × (1.6× 10−19)2

λD =

√
ε◦kT

n◦e2

λD =

√
12.213× 10−33

2.56× 10−32

λD =0.69 m

Problem: 1.4- In laser fusion, the core of a small pellet of DT is compressed to a

density of 1033m−3 at a temperature of 50000000 oK . Estimate the number of particles

in a Deybe sphere in this Plasma.

Solution

λD =?

ND =?

T =5× 107

n =1033m−3

λD =69(
T

n
)
1
2 (T in the unit of K)

λD =69(5× 107

1033
)
1
2
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CHAPTER 1. INTRODUCTION TO PLASMA

λD = 1.54× 10−11m Deybe length

Naturally, the number of particles contained in a Deybe sphere is

ND =
4

3
πλ3

D × n

ND =
4

3
× (1.54)3

ND ≈ 15

Problem: 1.5- Compute the pressure, in atmosphere and in Ions/ft2 exerted by a

thermonuclear Plasma on its container. Assume

kTe = kTi = 20keV

n = 1021m−m

p = nkT

Where T = Ti + Te

Solution

n =1021m−3

P =nkT

Assume kTe =kTi

T =Ti + Te

This is just unit conversion.

Quanta Publishers 6 Plasma Physics



1keV =1 · 6× 10−19J, So

P =1021 × (20keV + 20keV ) = 4× 1022m−3keV

P =4× 103m−mJ

P =4× 103
N

m2

But 1atm =105
N

m2
= 1

ton

ft2

P =0.04atm = 0.04
tan

ft2

Quanta Publishers 7 Plasma Physics



Chapter 2

Single Particle Motion

SOLVED PROBLEMS

Problem: 2.1- In the TFTR (Tokamak Fusion Test Reactor) at princetion, the plasma

was heated by injection of 200 keV neutral deuterium atoms, which after entering

the magnetic field, are converted to 200keV deuterium ions having A = 2 by charge

exchange. These ions are confined only if rL << a, where a = 0.6 m is the minor

radius of the toroidal plasma. Compute the maximum Larmor radius in a 5 T field to

see if this is satisfied.

Solution

For deuterium;

Atomic mass =A = 2

Mass =m = 2mP

Mass =m = 2× 1.6× 10−27 = 3.34× 10−27 kg

Charge = q = 1.6× 10−19 C

Magnetic field =B = 5 T

Energy =E = 200 keV = 200× 103 eV



Energy =E = 2× 105 × 1.6× 10−19 J

Larmor radius = rL =?

Since, we know that

V⊥ =

(
2× 105 × 1.6× 10−19

m

)1/2

V⊥ =

(
2E

3.34× 10−27

)1/2

V⊥ =
(
1.916× 1013

)1/2
V⊥ =0.437× 107 m/s

As, we know that

rL =
mV⊥

qB

rL =
3.34× 10−27 × 0.437× 107

1.6× 10−19 × 5

rL =0.181× 10−1

rL =0.018 m

As rL = 0.018 m << a = 0.6 m, so the Larmor radius satisfies the confined ion

condition.

Problem: 2.2- An ion engine has a 1 T magnetic field, and a hydrogen plasma is to be

shot out at an E ×B velocity of 1000 km/s. How much internal electric field must be

present in the plasma?

Solution

Given that:

Magnetic field =B = 1 T

Velocity = v = 1000 km/s = 106 m/s

Internal electric field =E =?
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CHAPTER 2. SINGLE PARTICLE MOTION

As, we know that

F = qvB

and

F = qE

On comparing the above two equations, we get

Eq = qvB

E = vB

E =106 × 1

E =106 V/m

Problem: 2.3- A hydrogen plasma is heated by applying a radio-frequency wave with E

perpendicular to B and with angular frequency ω = 109 rad/s. The confining magnetic

field is 1 T . Is the motion of (a) The electrons and (b) The ions in response to this

wave adiabatic?

Solution

Given data:

ω =109 rad/s

B =1 T

ωe =?

ωi =?

(a)

As, the Lamor frequency of electron is

ωe =
eB

me

ωe =
1.6× 10−19 × 1

9.11× 10−31

ωe =1.76× 1011 rad/s

As, ωe >> ω, so the motion of electron is adiabatic.
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(b)

As, the Lamor frequency of ion is

ωi =
eB

mi

ωi =
1.6× 10−19 × 1

1.67× 10−27

ωi =9.8× 107 rad/s

As, ω >> ωi, so the motion of ion is not adiabatic.

Problem: 2.4- Derive the result 2|Vm| directly by using the invariance of J . (a) Let∫
V∥ds ≃ V∥L and differentiate with respect to time. (b) From this, get an expression

for T in terms of dL
dt
. Set dL

dt
= −2Vm to obtain the answer.

Solution

(a)

Given that ∫
V∥ds = V∥L = constant

Now,

d

dt
(V∥L) =

d

dt
(constant)

V∥
dL

dt
+ L

dV∥

dt
=0

V∥L
′ + LV ′

∥ =0

(b)

Since,

V∥L
′ + LV ′

∥ =0

LV ′
∥ = − V∥L

′

V ′
∥

V∥
= − L′

L

Quanta Publishers 11 Plasma Physics



CHAPTER 2. SINGLE PARTICLE MOTION

V ′
∥ = − V∥

L′

L
∆V∥

T
=

V∥

L
(−L′) ∵ V ′

∥ =
dV∥

t

T =
∆V∥

V∥
· L

−L′

T =
∆V∥

V∥
· L

−dL
dt

T =
∆V∥

V∥
· L

−(−2Vm)

T =
∆V∥

V∥
· L

2Vm

T =
2V⊥i − V⊥i

1
2
(2V⊥i + V⊥i)

· L

2Vm

T =
V⊥i

1
2
3V⊥i

· L

2Vm

T =
2

3

L

2Vm

Since, Vm = 10 km/s = 104 m/s, L = 1010 km = 1013 m, so we get

T =
2

3

1013

2× 104

T =0.33× 109 s

T =3.3× 108 s

Problem: 2.5- Compute rL for the following cases if V∥ is negligible: (a) A 10 keV

electron in the earth’s magnetic field of 5 × 10−5 T . (b) A solar wind proton with

streaming velocity 300 km/s and field B is 5× 110−9 T .

Solution

(a)

Given data:

Energy of electron =E = 10 keV = 10× 103 eV
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Energy of electron =E = 104 × 1.6× 10−19 J

Earth’s magnetic field =B = 5× 10−5 T

Charge on electron = e = 1.6× 10−19 C

Mass of electron =m = 9.11× 10−31 kg

Larmor radius = rL =?

We know that,

rL =
V⊥

ωc

rL =
mV⊥

qB
(2.1)

Also,

E =
1

2
mV 2

⊥

V 2
⊥ =

2E

m

V⊥ =

(
2E

m

)1/2

V⊥ =

(
2× 104 × 1.6× 10−19

9.11× 10−31

)1/2

V⊥ =
(
0.3512× 1016

)1/2
V⊥ =0.593× 108

V⊥ =5.93× 107 m/s

Now, from Eq.(2.1), we get

rL =
9.11× 10−31 × 5.93× 107

1.6× 10−19 × 5× 10−5

rL =
6.75× 10−24

10−24

rL =6.75 m

(b)

Given data:
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CHAPTER 2. SINGLE PARTICLE MOTION

V⊥ =3300 km/s = 300× 1000 m/s

V⊥ =3× 105 m/s

B =5× 10−9 T

m =1.67× 10−27 kg

rL =?

As, we know that

rL =
mV⊥

qB

rL =
1.67× 10−27 × 3× 105

1.6× 10−19 × 5× 10−9

rL =
0.626× 10−22

10−28

rL =0.626× 10−22+28 = 0.626× 106

rL =6.26× 105 m

Quanta Publishers 14 Plasma Physics



Chapter 3

Plasma as Fluid

SOLVED PROBLEMS
Problem: 3.1- If the ion cyclotron frequency is denoted by ΩC and the ion plasma

frequency is defined by

ΩP =

(
ne2

ε◦M

) 1
2

where M is the ion mass, under what circumstances is the dielectric constant ε ap-

proximately equal to
Ω2

P

Ω2
C
?

Solution

As we know that

ε ∼= 1 +
nM

ε◦B2
∼=

Ω2
P

Ω2
C

(3.1)

As,

ΩP =

(
ne2

ε◦M

) 1
2

Ω2
P =

ne2

ε◦M
(3.2)

Also,
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ΩC =
eB

M
1

ΩC

=
M

eB

1

Ω2
C

=
M2

e2B2
(3.3)

Put Eqs.(3.2) and (3.3) into Eq.(3.1), we get

ε =
ne2

ε◦M
· M2

e2B2

ε =
nM

ε◦B2

The dielectric constant ε is approximately equal to
Ω2

P

Ω2
C
if ε >> 1.

Problem: 3.2- show that the expression for JD on the right hand side of the equation

JD = (kTi + kTe)
B ×∇n

B2

has the dimensions of current density.

Solution

JD =(kTi + kTe)
B ×∇n

B2

JD =(kTi + kTe)
B ×∇n

B2
∝ kT

e

ne

BL
(3.4)

Since,

kT ∝ eϕ and E ∝ −ϕ

L
=⇒ ϕ = −EL

So, we get

kT ∝ e(−EL)

kT

eL
∝ E (3.5)

Putting the value of Eq.(3.5) into Eq.(3.4), we get

Quanta Publishers 16 Plasma Physics



JD ∝kT

eL

ne

B

JD ∝E
ne

B

JD ∝neE

B

As, VE = E
B
, so we get

JD ∝ neVE

Problem: 3.3- Evaluate diamagnetic current density JD in A/m2 for B = 0.4 T ,

n◦ = 1016 m−3, kTe = kTi = 0.25 eV, r = r◦ = 1 cm.

Solution

Given data:

B =0.4 T

n◦ =1016 m−3

kTe = kTi =0.25 eV

r = r◦ =1 cm = 10−2 m

JD =?

We know that

JD = ne (|VDe|+ |VDi|) (3.6)

where,

|VDe| = |VDi| =
(kT )eV

B

2r

r2◦

Putting values, we get

|VDe| = |VDi| =
0.25× 2r

0.4× r2◦

|VDe| = |VDi| =1.25× r

r2◦
ms−1 (3.7)

|VDe| = |VDi| =1.25× r

r

2
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CHAPTER 3. PLASMA AS FLUID

|VDe| = |VDi| =
1.25

r

|VDe| = |VDi| =
1.25

10−2

|VDe| = |VDi| =1.25× 102

Now, from Eq.(3.6), we get

JD = ne (2VDe) ε
−1

JD =
ne (2VDe)

ε
(3.8)

As,n◦ = 1016, e = 1.6× 10−19, VDe = 1.25× 102, ε = 2.718, put in Eq.(3.8), we get

JD =
1016 × 1.6× 10−19 (2× 1.25× 102)

2.718

JD =1.47× 1016−19+2

JD =1.47× 10−1

JD =0.147 A/m2

Problem: 3.4- An isothermal plasma is confined between the planes x = ±a in a

magnetic field B = B◦Ẑ. The density distribution is

n = n◦

(
1− x2

a2

)
Evaluate VDe at x = a

2
, if B = 0.2T, kTe = 2eV and a = 4cm.

Solution

Given data:

B =0.2T

kTe =2eV

a =4cm = 4× 10−2m

VDe =?

As, we know that

Quanta Publishers 18 Plasma Physics



VDe =
kT (eV )

B(T )

1

Λ
ms−1

VDe =
2

0.2

1

Λ

VDe =10
1

Λ

VDe =10Λ−1 (3.9)

As,

Λ−1 =

∣∣∣∣n′

n

∣∣∣∣ (3.10)

But, given that

n =n◦

(
1− x2

a2

)
n =n◦

(
1−

(
a
2

)2
a2

)
∵ x =

a

2

n =n◦

(
1− a2

4a2

)
n =n◦

(
1− 1

4

)
n =n◦

(
3

4

)
(3.11)

Also,

n =n◦

(
1− x2

a2

)
n =n◦ − n◦

x2

a2

Taking differentiation, we get

n′ =0− 2n◦
x

a2

n′ = − 2n◦
x

a2

Quanta Publishers 19 Plasma Physics



CHAPTER 3. PLASMA AS FLUID

n′ = − 2n◦

a
2

a2
∵ x =

a

2

n′ = − 2n◦

a2
a

2

n′ = − n◦

a
(3.12)

Put the value of Eqs.(3.11) and (3.12) in Eq.(3.10), we get

Λ−1 =

∣∣∣∣n′

n

∣∣∣∣ =
∣∣∣∣∣ −n◦

a

n◦
(
3
4

)∣∣∣∣∣
Λ−1 =

1
a
3
4

Λ−1 =
1

0.04
3
4

Λ−1 =
25

0.75

Λ−1 =33.3 m−1

Now, from Eq.(3.9), we get

VD =10× 33.3

VD =333 ms−1

Problem: 3.5- Calculate the plasma frequency when plasma density at 50 Km is

1018 m−3 and at 70 Km is 1017 m−3 and at 85 Km is 1014 m−3.

Solution

Given data:

Plasma density at 50 Km =n◦ = 1018 m−3

Plasma density at 70 Km =n◦ = 1017 m−3

Plasma density at 85 Km =n◦ = 1014 m−3

Mass of electron =me = 9.11× 10−31 Kg

Charge on electron = e = 1.67× 10−27 C

Plasma frequency = f =?
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As, we know that

f =
ωP

2π

We also know that

ωP =

√
n◦e2

mε◦

ωP = e

√
n◦

mε◦

So, we have

f =
e
√

n◦
mε◦

2π

f =
e

2π

√
n◦

mε◦

for n◦ = 1018 m−3, we have

f =
1.67× 10−27

2× 3.14

√
1018

9.11× 10−31 × 8.85× 10−12

f =8.97× 109 Hz

f =8.97 GHz

for n◦ = 1017 m−3, we have

f =
1.67× 10−27

2× 3.14

√
1017

9.11× 10−31 × 8.85× 10−12

f =2.839× 109 Hz

f =2.839 GHz

for n◦ = 1014 m−3, we have

f =
1.67× 10−27

2× 3.14

√
1014

9.11× 10−31 × 8.85× 10−12

f =89.79× 106 Hz

f =89.79 MHz
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Chapter 4

Plasma in Waves

SOLVED PROBLEMS
Problem: 4.1- Calculate the alfven speed in region of the magnetosphere where B =

10−8 T, n = 108 m−3 and M = MH = 1.67× 1027 kg.

Solution

B =10−8

n =108 m−3

M = MH =1.67× 10−27 kg

VA =?

As ρ =n◦M

ρ =108 × 1.67× 10−27

ρ =1.67× 10−19

We know that the Alfven speed is

VA =
B

√
µ◦ρ



VA =
10−8

√
4π × 10−7 × 1.67× 10−19

VA =
10−8

√
20.98× 10−26

VA =
10−8

4.58× 10−13

VA =0.218× 10−8+13

VA =0.218× 105

VA =2.18× 104 m/s

Problem: 4.2- For electromagnetic waves, show that the index of refraction is equal to

the square root of appropriate plasma dielectric constant ε.

Solution

As, we know that

ñ =
ck

ω
(4.1)

Also, from ordinary wave equation,

ω2 =ω2
P + c2k2

ω2

ω2
=

ω2
P

ω2
+

c2k2

ω2

1 =
ω2
P

ω2
+

c2k2

ω2

c2k2

ω2
=1− ω2

P

ω2√
c2k2

ω2
=

√
1− ω2

P

ω2

ck

ω
=

√
1− ω2

P

ω2

Now, from Eq.(4.1), we get

ñ =

√
1− ω2

P

ω2

ñ =
√
ε ∵ ε = 1− ω2

P

ω2
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CHAPTER 4. PLASMA IN WAVES

Problem: 4.3- A hydrogen discharge in a 1 T field produces a density of 1016 m−3. (a)

What is the Alfven speed VA. (b) Suppose VA had come out greater than c. Does this

mean that Alfven waves travel faster than the speed of light?

Solution

(a)

B =1 T

ρ =1016 m−3

VA =?

As, we know that

VA =
B

√
µ◦ρ

VA =
1√

4π × 10−7 × 1016

VA =2.18× 108 m/s

(b)

The Alfven wave represents for phase velocity. And phase velocity did not carry infor-

mation. So, it does not mean that wave can travel faster than light.

Problem: 4.4- Electron plasma waves are propagated in a uniform plasma with kTe =

100 eV, n = 1016 m−3 and B = 0. If the frequency f is 1.1 GHz, what is the wavelength

in cm?

Solution

kTe =100 eV

n =1016 m−3

B =0

f =1.1 GHz = 1.1× 109 Hz

λ =?
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From the dispersion relation of electron plasma wave, we have

ω2 =ω2
P +

3

2
k2V 2

th

ω2 =ω2
P +

3

2
k2 × 2kTe

m
∵ V 2

th =
2kTe

m

ω2 =ω2
P +

3kTe

m
k2

ω2 − ω2
P =

3kTe

m
k2

k2 =
ω2 − ω2

P
3kTe
m

(4.2)

As, we know that

ωP =2π
√
n

ωP =6.28×
√
1016

ωP =6.28× 108 rad/sec

Also,

ω =2πf = 2× 3.14× 1.1× 109

ω =6.908× 109 rad/sec

Now,

3kTe

m
=

3× 100× 1.6× 10−19

9.11× 10−31

3kTe

m
=52.68× 1012

3kTe

m
=5.27× 1013

Putting the values in Eq.(4.2), we get
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k2 =
(6.908× 109)2 − (6.28× 108)2

5.27× 1013

k2 =
16.14

5.27
× 105

√
k2 =

√
16.14

5.27
× 105

k =553.17

As,

λ =
2π

k
=

2× 3.14

553.17

λ =
6.2831

553.17

λ =1.13 cm

Problem: 4.5- By writing the linearized Poisson equation used in the derivation of

simple plasma oscillations in the form

∇ · (εE) = 0

Derive an expression for the dielectric constant ε applicable to high frequency longi-

tudinal motions.

Solution

From Gauss’s law

∇E =
ρ

ε◦

∇Ei =
−en1

ε◦

ikEi =
−en1

ε◦
∵ ∇ = ik (4.3)

From the equation of continuity, we get
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∂n

∂t
+∇nV = 0

∂n1

∂t
+∇n◦V1 = 0

−iωn1 + ikn◦V1 =0

−iωn1 = − ikn◦V1

n1 =
kn◦V1

ω
(4.4)

Now, from equation of motion, we get

mn

(
∂V

∂t
+ (V · ∇)V

)
= qn (E + V ×B)−∇ρe

mn

(
∂V

∂t
+ 0

)
= qn (E + 0)− 0

mn
∂V1

∂t
= qnE1

m
∂V1

∂t
= qE1

−iωmV1 = − eE1 ∵ q = −e

V1 =
eE1

iωm

V1 =
ieE1

i2ωm

V1 = − ieE1

ωm
(4.5)

Put the value of Eq.(4.5) in Eq.(4.4), we get

n1 =
kn◦

(
− ieE1

ωm

)
ω

n1 =
kn◦

ω
· −ieE1

ωm

n1 =
−ekn◦iE1

mω2
(4.6)

Put the value of Eq.(4.6) in Eq.(4.3), we get
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ikE1 =
−e

ε◦
· −ekn◦iE1

mω2

ikE1 =
e2kn◦iE1

ε◦mω2

ikE1 −
e2kn◦iE1

ε◦mω2
=0

ik

(
1− n◦e

2

ε◦mω2

)
E1 =0

ik

(
1− ω2

P

ω2

)
E1 =0 ∵ ω2

P =
n◦e

2

ε◦m

∇ · (εE) = 0 ∵ ε = 1− ω2
P

ω2
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Chapter 5

Plasma Confinement

SOLVED PROBLEMS

Problem: 5.1- Find the closest approach of a 2MeV proton to a gold nucleus. How

does this distance compare with those for a deuteron and alpha particle of the same

energy ?

Solution

The distance of closes approaches r is that distance from the nucleus at which the

total energy of incident particle is potential and is given by

1

2
Mv2 =

Zze2

4πϵ0r

E = 2MeV = 2× 1.6× 10−13joule

R =
Zze2

4
πϵ0r

ER = 5.688× 10−14meter

This distance is same for deuteron of the same energy as charge ze on the deuteron is

same as that od proton. Since the charge on the alpha particle is double that of one

the proton. Hence r = 1.376× 10−14m.
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Problem: 5.2- If the energy of alpha particle emitted by Am241 is 5.48MeV , find the

closest distance it can approach to a Au nucleus.

Solution

The distance of closest approach is given by D = 2Ze2/4π∈◦E. As

E = 5.48MeV

= 5.48× 1.6× 10−13

D =
9× 109 × 2× 79×

(
1.6× 10−19

)2
5.48× 1.6× 10−13

D = 4.14× 10−14m

Problem: 5.3- Consider a gas of atoms undergoing fusion. Calculate the temperature

required to overcome the Coulomb barrier and the released if the gas consists of

1. 10B

2. 24Mg.

Solution

(1) Let us estimate the height of the Coulomb barrier. It is given by the relation

Vcoul =
Z1Z2e

2

r

Here, r is the separation between two nuclei at the point of closest approach. It is

given by the sum of radii of two 10B nuclei. The radius of each of the nucleus can be

estimated using r = 1.2A
1
3f . Therefore,

r = 1.2× 10
1
3 + 1.2× 10

1
3 = 5.17f

Coulomb barrier can be written

Vcoul =
Z1Z2 × ℏc

r
× e2

ℏc

=
e2

ℏc
=

1

137
= a

Substituting various values, we get
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Vcoul =
1

137
× 5× 5× 197.5MeV f

5.17 f

= 6.97 MeV

= 1.12× 10−12J

In order to calculate the temperature required to overcome the Coulomb barrier, we

equate this energy to thermal energy as

3

2
KT = E = Vcoul

where K is Boltzmann’s constzant and T is absolute temperature. or

3

2
× 1.38× 10−23T = 1.12× 10−12

T = 5.4× 1010K

Similar calculations are performed for the case of 24Mg fusing with 24Mg as under.

(2) Let us estimate the height of the Coulomb barrier. It is given by the relation

Vcoul =
Z1Z2e

2

r

Here, r is the separation between two nuclei at the point of closest approach. It is

given by the sum of radii of two 24Mg nuclei. The radius of each of the nucleus can be

estimated using r = 1.2A
1
3f . Therefore,

r = 1.2× 24
1

3
+ 1.2× 24

1
3 = 6.92f

Coulomb barrier can be written

Vcoul =
Z1Z2 × ℏc

r
× e2

ℏc

=
e2

ℏc
=

1

137
= a

Substituting various values, we get
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Vcoul =
1

137
× 12× 12× 197.5MeV f

6.92 f

= 29.99 MeV

= 4.80× 10−12J

In order to calculate the temperature required to overcome the Coulomb barrier, we

equate this energy to thermal energy as

3

2
KT = E = Vcoul

where K is Boltzmann’s constzant and T is absolute temperature. or

3

2
× 1.38× 10−23T = 4.80× 10−12

T = 23.2× 1010K

Problem: 5.4- Calculate the mass defect and Q-values for the fusion

d+ d −→ 3He+ n

d+ d −→ 3H + p

Assuming these occur with the deuterons at rest, find the kinetic energies of the

outgoing particles in each case. Given

mp = 1.007825 amu

mn = 1.008665 amu

m(2H) = 2.014102 amu

m(3H) = 3.016049 amu

m(3He) = 3.016029 amu

Solution

We have
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d+ d −→ 3He+ n

Mass defect is given by the relation

Mass defect = 2×md −m(3He)−mn

Substituting various given masses, we get

Mass defect = 2× 2.014102− 3.016029− 1.008665

= 0.00351 amu

and

Q− value = mass defect(amu)× 931.47 Mev

= 0.00351× 931.47 MeV

= 3.27 MeV

d+ d −→ 3H + p

Mass defect is given by the relation

Mass defect = 2×md −m(3H)−mp

Substituting various given masses, we get

Mass defect = 2× 2.014102− 3.016049− 1.007825

= 0.00433 amu

and

Q− value = mass defect(amu)× 931.47 Mev

= 0.00433× 931.47 MeV

= 4.03 MeV
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4.03 Mev Assuming the initial state deuterons are essentially at rest then the final state

kinetic energy is equal to Q. By applying the conservation of momentum it can be seen

that the share of the kinetic energy that each particle has is inversely proportional to

its mass. Thus, for these reactions, the heavier particle takes one quarter while the

lighter particle takes three quarters of the total kinetic energy (Q)

Quanta Publishers 34 Plasma Physics



 



 


