
INTRODUCTION PAST PAPERS

PAST PAPERS

For Online Order

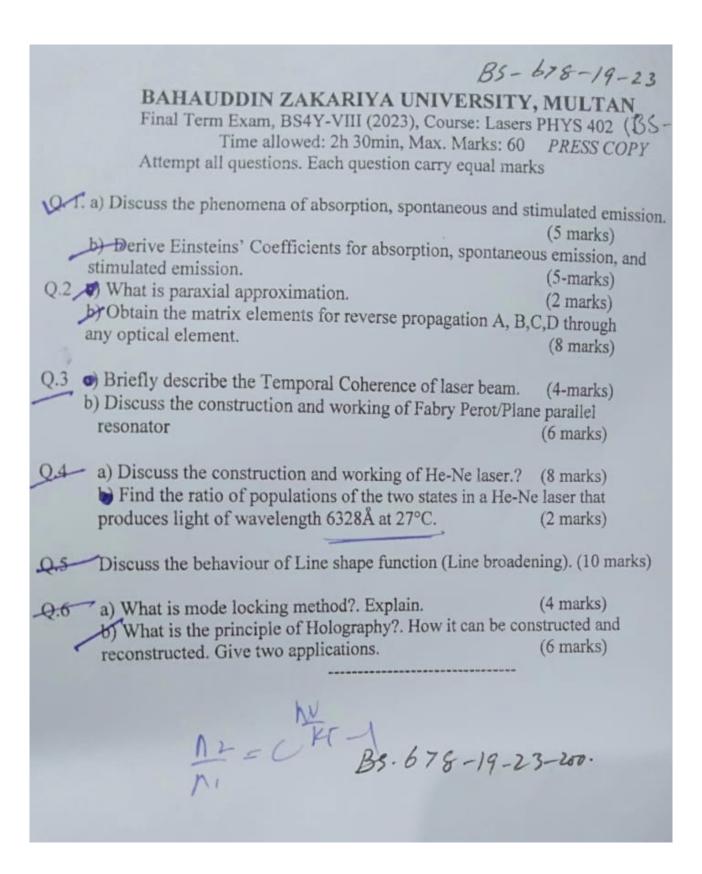
0313-7899577

www.quantapublisher.com

GOVERNMENT COLLEGE UNIVERSITY, FAISALABAD Affiliated Colleges Semester Examinations Roll No.

Roll No.

Ar Designation	3-1		Koli 140.
Semester 8th			Jacob State Committee
Course title: Lase Session: 2016-202		Paper timing: 1ar. Co	ourse code: PHY- 608 lax Marks: 50
Choose the corre	ct option.		
1. The time durin	ig which an elec	tron can exist in the ground state is:	
(a)unlimited	(b) 10 ⁻⁸ s	(c) 10^{-3} s (d) 10^{-19} s	
2. Rate of sponta	neous emission	is proportional to the number of atoms in	the:
(a) excited state	(b) ground s	tate (c) All energy states (d) none of	of these
3. The rate of stir	mulated emissio	on depends upon number of atoms in the c	excited state and the:
(a) intensity of an	external field	(b) frequency of field	
(c) direction of ex	ternal field	(d) none of these	
4. The time durin	ng which an elec	ctron can exist in the excited state is called	l:
(a) decay time	(b) life time	(c) spontaneous time (d) stimulated time	ne
5. The absorption	n rate and emis	sion rate in equilibrium must be:	
(a) absorption rate	e <emission rate<="" td=""><td>same (b) Different</td><td></td></emission>	same (b) Different	
(c) absorption rate	e>emission rate	(d) same	
6. The life time of	of electron in me	etastable state is:	
(a)10 ⁻³ s	(b) 10 ⁻⁵ s	(c) 10^{-8} s (d) 10^{-7} s	
7. A* ———————————————————————————————————	, process repres	ents:	
(a) spontaneous e	mission	(b) stimulated emission	
(c) Absorption		(d) Thermionic emission	er in anticali eller per com session
8. According to	the equation E=	nhU, The relation gives photon/second is:	
$(a)\frac{E}{h}$ (b)	$\frac{E}{nh}$	(c) $\frac{E}{hv}$ (d) $\frac{E}{nv}$	
		ous emission and stimulation emission is b	palanced with absorption is called:
(a) steady state co	ondition	(b) Threshold condition	
(c) critical conditi	ion	(d) Resonator condition	
10. A* →hU	A→2 hU, pro	ocess represents:	
(a) spontaneous e	mission	(b) stimulated emission	
(c) Absorption		(d) Thermionic emission	


LASER

11. A laser is a optical source that emits photons in the form of a:
(a) Non coherent beam (b) Coherent beam (c) both a and b (d) none
12.A system in which population inversion is achieved is called:
(a) laser cavity (b) pumping source (c) Amplification (d) Active medium
13. The method of raising the particle from lower energy state to higher energy state is called :
(a) Pumping (b) Threshold condition
(c)population inversion (d)Gain of laser cavity
14. Laser light consist of:
(a) seven wavelengths (b) Four wavelengths
(c) Multiple wavelengths (d) one wavelengths
15. Laser radiation is:
(a) Monochromatic (b) Unidirectional
(c) produced with large power (d) All of these
16. The method of population inversion to the laser in He-Ne laser is:
(a) Atomic collision (b) Direct conversion
(c) Electric discharge (d) electron impact
17. The population inversion cannot be achieved in a:
(a) 2- level system (b) 3- level system (c) 4-level system (d) none
18. Which color of the laser light has the shortest wavelength:
(a) Yellow (b) Blue (c) Red (d) Green
19. Which scientist first came up with the idea of stimulated emission:
(a) Graham Bell (b) Newton (c) Schalow (d) Einstein
20. The steady state condition is achieved in laser cavity when:
(a) Gain>Loss (b) Gain=Losses (c) Gain< Losses (d) Gain=(losses) ²
21. A VAG laser has a frequency of 2.8x10 ¹⁴ Hz. The wavelength of laser beam is:
(a) 1.2×10^{-23} m (b) 1.1×10^{-6} (c) 1.2×10^{-2} (d) 9.4×10^{5} m
22. The basic principle involved in laser action is phenomenon of:
(a) Spontaneous emission (b) Absorption process
(c) Stimulated emission (d) Bandwidth
23. Laser beam is made of:
(a) Electrons (b) coherent photons (c) Elastic particles (d)Excited atioms

1	frequency for m=1, of first longitudinal mode in laser cavity is called:
	Basic frequency (b) Harmonic frequency
	(c) Overturned frequency (d) Amplitude modulation
	25. The frequency of the longitudinal modes in laser cavity is:
	(a) $U_m = m(c/2nL)$ (b) $U_m = m(c/nL)$ (c) $U_m m(c/2n)$ (d) $U_m = hU\lambda$
	26. The basic frequency of the laser cavity is equal to:
	(a) Mode spacing (b) Fringe spacing (c) Diffraction pattern (d) wavelength
	27. The difference " Δυ" between frequencies of adjacent longitudinal modes is:
	(a) $\Delta v = c/2nL$ (b) $\Delta v = \lambda c/2nL$ (c) $\Delta v = hc/2nL$ (d) $\Delta v = h^2 c^2/2nL$
	28. The mechanical shutters in laser cavity are used for:
	(a) Q-switching (b) Mode locking (c) Population inversion (d) Line width
	29. The optical path from one mirror to the other mirror and back mirror is called:
	(a) Roundtrip (b) Wavelength (c) Amplitude (d) Planck's constant
	30. The dimension of Planck's constant are that of:
	(a) Linear momentum (b) Angular momentum (c) Energy (d) Speed
	31. The relation $I=\sigma T^4$ for black body radiation curve represents:
	(a) Wein's displacement law (b) Stefan-Boltzmann's law
	(c) Rayleigh-Jean law (d) none
	32. The total radiated power per unit area of cavity aperture is called radiant:
	(a) Intensity (b) Frequency (c) Wavelength (d) None
	33. The Ruby laser is:
	(a) Continuous laser (b) Gas laser (c) Semiconductor laser (d) Pulsed laser
	34. The method of achieving population inversion in Ruby laser is:
	(a) Optical laser (b) Inelastic scattering (c) Forward laser (d) Chemical laser
	35. The He-Ne laser is:
	(a) Continuous laser (b) Gas laser (c) Semiconductor laser (d) Pulsed laser
	36. The method of achieving population inversion in He-Ne laser is:
	(a) Optical laser (b) Inelastic scattering (c) Forward laser (d) Chemical laser
	37. A semiconductor diode laser is :
	(a) Four level laser (b) Three level laser (c) Two level laser (d) One level laser
	38. A He-Ne laser is:

(a) Four level laser (b) Three level laser (c) Two level laser (d) One level laser	
39. Which of the following can be used for generation of laser pulse?	-
(a) Ruby laser (b) Carbon dioxide laser (c) Helium neon laser (d) Nd-YAG laser	
40. Which of the following can be used in a vibrational analysis of structure?	
(a) Maser (b) Quarts (c) electrical waves (d)Laser	
41. The value of Planck's constant is:	
(a) $6.63 \times 10^{-31} \text{ J-s}$ (b) $6.63 \times 10^{-34} \text{ J-s}$ (c) $1.67 \times 10^{-27} \text{ J-s}$ (d) $6.02 \times 10^{23} \text{ J-s}$	
42. There "Bagel" TEM is composed of:	
(a) TEM ₀₁ and TEM10 . (b)TEM ₁₁ and TEM ₁₂	
(c) TEM ₁₁ and TEM ₁₃ (d) TEM ₂₁ and TEM ₁₂	
43. When light travelling in a certain medium falls on surface of another medium, a part of it turns back in same in This phenomenon is called:	nedium.
(a) Reflection (b) Refraction (c) Diffraction (d) Acoustics	
44. To describe change in speed of light in a medium, term used is called:	
(a) Index of reflection (b) Index of refraction	
(c) Index of diffraction (d) Index of acoustics	
45. When a ray of light enters from denser medium to rarer medium, it bends:	
(a) Towards normal (b) Away from normal	
(c) Perpendicular to normal (d) Parallel to normal	
46. Lens which diverges light from a single point is:	
(a) Concave lens (b) Convex lens (c) Biconvex (d) Both b and c	
47. Reflection by smooth surface is called:	
(a) Irregular reflection (b) Refraction	
(c) Regular reflection (d) Reflection	
48. A point on principle axis at center of lens is known as:	
(a) Principle axis (b) Optical center (c) Principle focus (d) Focal length	
49.If "i" is angle of incidence, "r" is angle of refraction and n is constant then sin i/sin r=n is known as:	
(a) Snell's law (b) Newton's law (c) Hooke's law (d) Einstein's law	
50. Study of light behavior is called:	
(a) Lenses (b) Optics (c) Mechanics (d) Heat	
SUBJECTIVE PART Time Allowed: 50Min Max Marks: 25	•
Attempt all short questions.	
Q1. Calculate wavelength of a photon of light with a frequency of 6.2x 10 ¹⁴ Hz.	/
QS2. Explain stimulation emission.	4
Q3. State conditions which determine the radiation modes in laser cavity.	
Q4. What is meant by optical resonator.	
Q5. Write down four applications of laser.	

B.Z.U PAST PAPERS

B.Z.U PAST PAPERS

BAHAUDDIN ZAKARIYA UNIVERSITY, MULTAN

Name of Examination: BS Physics Sem-VIII (2018-22)
Subject: Physics, Course code: PHYS-402, Paper: Lasers
Maximum Marks: 60

Note: Attempt any All questions. Each question carry equal marks.

	Questions	Mar
	Describe the process of Absorption, Spontaneous and Stimulated	6
C.	mission. Derive the condition for gain per pass of laser through the active dedium and obtain the condition for oscillation.	6
a) b)	- t Ti - t-t- C Cinimite	10
a) b)	Differentiate between three level and four level pumping scheme?. Discuss the stimulated transitions between two rotational- vibrational levels of different electronic states in molecules.	4 8
a) b) c)	Discuss the construction and working of plane parallel resonators. What is the Quality factor of the plane parallel resonator. Discuss the phenomena of Q-switching and mode locking.	5 2 5
a) b)	Discuss the construction and working of He-Ne laser. List few applications of He-Ne laser.	10
	Discuss the behavior of the Line shape function (Line broadening) of a laser beam.	1

NAME:----

GOVERNMENT COLLEGE UNIVERSITY, FAISALABAD

spring semester examinations 2019

Roll	No	
	140	

SUBJECTIVE PART

SEMESTER: IV CLASS: M.Sc PHYSICS COURSE CODE: PHY-658

PAPER: LASER & OPTICS

TIME: 2 HOURS & 30 MINUTES ROLL #: 129207

NOTE: All questions carry equal marks.

Q2	(a) What is optical feedback in a laser system? Also discuss various types of losses involved in optical feedback systems?	
,	(b) Calculate the mirror reflectance required to sustain laser oscillations in a laser which is 0.1 m long given that the small signal gain coefficient is 1 m ⁻¹ . (assume one has 100% reflectance)	3
Q 3	Write a detailed note on 4 level laser system.	6
8 4	Draw the stability diagram and describe how it can be used to find the stability of optical resonators.	6
Q 5	What is laser spectrum broadening, discuss various causes of broadening.	6
Q 6	What is holography and how it is different from conventional photography. Also discuss why holography is not possible with conventional light sources.	6